PDF (59.6 MB)
Collect
Submit Manuscript
Review Article | Open Access | Online First

Interface-driven self-assembly: A robust strategy for chiral generation and amplification in inorganic nanomaterials

Wenhui YanXinyu WangDai-Wen PangJiarong Cai ()
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
Show Author Information

Graphical Abstract

View original image Download original image
This review examines interface-driven self-assembly strategies for generating and amplifying chiroptical properties in inorganic nanomaterials. It highlights key mechanisms, interfacial processes, and influencing factors, reviews theoretical models, and discusses applications in biosensing and photonics.

Abstract

The generation and amplification of chirality in inorganic nanomaterials have garnered significant attention due to their promising applications in enantioselective catalysis, chiral sensing, and optoelectronics. Interface-driven self-assembly has emerged as a robust and versatile strategy to induce and enhance chirality in these systems, offering precise control over the spatial organization of nanoscale building blocks. This review presents a comprehensive overview of recent advancements in interface-driven self-assembly techniques, focusing on how these methods facilitate the generation and amplification of chiroptical properties in inorganic nanomaterials. We examine the strategies of interface-driven self-assembly through external torsion, aggregation amplification, and chiral molecule induction, highlighting key mechanisms that contribute to enhanced chiral responses. Self-assembly processes at liquid–liquid, gas–liquid, and liquid–solid interfaces are critically discussed, along with the influence of parameters, such as nanoparticle shape, surface ligand composition, and external stimuli on the formation of chiral nanostructures. Additionally, theoretical models describing the emergence of chirality are examined, providing insights into the role of interfacial molecular interactions in driving observed chiroptical effects. Finally, we review the applications of these chiral nanomaterials in spintronics, chiral photonics, and beyond, and propose future directions for advancing the design and development of novel chiral inorganic nanomaterials. This robust strategy holds great potential for facilitating breakthroughs in both the fundamental understanding and the practical implementation of chiral nanostructures.

References

[1]

Liu, J. J.; Yang, L.; Qin, P.; Zhang, S. Q.; Yung, K. K. L.; Huang, Z. F. Recent advances in inorganic chiral nanomaterials. Adv. Mater. 2021, 33, 2005506.

[2]

Liu, X.; Du, Y. L.; Mourdikoudis, S.; Zheng, G. C.; Wong, K. Y. Chiral magnetic oxide nanomaterials: Magnetism meets chirality. Adv. Opt. Mater. 2023, 11, 2202859.

[3]

Ma, W.; Xu, L. G.; de Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041–8093.

[4]

Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

[5]

Hao, C. L.; Wang, G. Y.; Chen, C.; Xu, J.; Xu, C. L.; Kuang, H.; Xu, L. G. Circularly polarized light-enabled chiral nanomaterials: From fabrication to application. Nano-Micro Lett. 2023, 15, 39.

[6]

Jiang, S.; Kotov, N. A. Circular polarized light emission in chiral inorganic nanomaterials. Adv. Mater. 2023, 35, 2108431.

[7]

Zheng, A. Y.; Zhao, T. H.; Jin, X.; Miao, W. G.; Duan, P. F. Circularly polarized luminescent porous crystalline nanomaterials. Nanoscale 2022, 14, 1123–1135.

[8]

Basiri, A.; Chen, X. H.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-stokes polarimetric measurements. Light: Sci. Appl. 2019, 8, 78.

[9]

Liu, X. L.; Jin, R. H. Recent advances in circularly polarized luminescence generated by inorganic materials. Chem. Synth. 2022, 2, 7.

[10]

Long, G. K.; Jiang, C. Y.; Sabatini, R.; Yang, Z. Y.; Wei, M. Y.; Quan, L. N.; Liang, Q. M.; Rasmita, A.; Askerka, M.; Walters, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 2018, 12, 528–533.

[11]

Kulkarni, C.; Mondal, A. K.; Das, T. K.; Grinbom, G.; Tassinari, F.; Mabesoone, M. F. J.; Meijer, E. W.; Naaman, R. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 2020, 32, 1904965.

[12]

Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Pichler, H.; Zoller, P. Chiral quantum optics. Nature 2017, 541, 473–480.

[13]

Sakurai, M. On-surface synthesized magnetic nanoclusters of ferrocene derivatives. Chem. Synth. 2024, 4, 42.

[14]

Li, S.; Xu, X. X.; Xu, L. G.; Lin, H. W.; Kuang, H.; Xu, C. L. Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis. Nat. Commun. 2024, 15, 3506.

[15]

Zhang, H.; He, H.; Jiang, X. M.; Xia, Z. N.; Wei, W. L. Preparation and characterization of chiral transition-metal dichalcogenide quantum dots and their enantioselective catalysis. ACS Appl. Mater. Interfaces 2018, 10, 30680–30688.

[16]

Dong, K.; Xu, C.; Ren, J. S.; Qu, X. G. Chiral nanozymes for enantioselective biological catalysis. Angew. Chem. 2022, 134, e202208757.

[17]

Li, T. Y.; Pan, Y.; Ding, L. Y.; Kang, Y. H.; Hao, X. Q.; Guo, Y. J.; Shi, L. L. Chiral cage materials with tailored functionalities for enantioselective recognition and separation. Chem. Synth. 2024, 4, 35.

[18]

Morrow, S. M.; Bissette, A. J.; Fletcher, S. P. Transmission of chirality through space and across length scales. Nat. Nanotechnol. 2017, 12, 410–419.

[19]

Wang, Z. M.; Yin, X. X.; Ba, J. J.; Li, J. P.; Wei, Y. J.; Wang, Y. Z. Chiral transfer and evolution in cysteine induced cobalt superstructures. Small 2024, 20, 2402058.

[20]

Du, C.; Li, Z. J.; Zhu, X. F.; Ouyang, G. H.; Liu, M. H. Hierarchically self-assembled homochiral helical microtoroids. Nat. Nanotechnol. 2022, 17, 1294–1302.

[21]

Nepal, D.; Kang, S.; Adstedt, K. M.; Kanhaiya, K.; Bockstaller, M. R.; Brinson, L. C.; Buehler, M. J.; Coveney, P. V.; Dayal, K.; El-Awady, J. A. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 2023, 22, 18–35.

[22]

Toxvaerd, S. Origin of homochirality in biosystems. Int. J. Mol. Sci. 2009, 10, 1290–1299.

[23]

Wang, G. Y.; Qu, A. H.; Sun, M. Z.; Xu, J.; Kuang, H. Chemical mechanisms and biological effects of chiral nanomaterials. Acc. Mater. Res. 2024, 5, 1221–1236.

[24]

Zhao, X. L.; Zang, S. Q.; Chen, X. Y. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev. 2020, 49, 2481–2503.

[25]

Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Aponte, J. C.; Dworkin, J. P. The search for chiral asymmetry as a potential biosignature in our solar system. Chem. Rev. 2020, 120, 4660–4689.

[26]

Liu, X. L.; Jin, R. H. A versatile messenger for chirality communication: Asymmetric silica framework. Chem. Synth. 2021, 1, 14.

[27]

Jin, X.; Zhou, M. H.; Han, J. L.; Li, B.; Zhang, T. Y.; Jiang, S.; Duan, P. F. A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. Nano Res. 2022, 15, 1047–1053.

[28]

Probst, P. T.; Dong, Y.; Zhou, Z. W.; Aftenieva, O.; Fery, A. Bottom-up assembly of inorganic particle-based chiroptical materials. Adv. Opt. Mater. 2024, 12, 2301834.

[29]

Wang, P. P.; Yu, S. J.; Ouyang, M. Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality. J. Am. Chem. Soc. 2017, 139, 6070–6073.

[30]

Liu, W. L.; Han, H.; Wang, J. Q. Recent advances in the 3D chiral plasmonic nanomaterials. Small 2024, 20, 2305725.

[31]

Kumar, P.; Vo, T.; Cha, M.; Visheratina, A.; Kim, J. Y.; Xu, W. Q.; Schwartz, J.; Simon, A.; Katz, D.; Nicu, V. P. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 2023, 615, 418–424.

[32]

Lv, J. W.; Gao, X. Q.; Han, B.; Zhu, Y. F.; Hou, K.; Tang, Z. Y. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 2022, 6, 125–145.

[33]

Lan, X.; Wang, Q. B. Self-assembly of chiral plasmonic nanostructures. Adv. Mater. 2016, 28, 10499–10507.

[34]

Song, M.; Tong, L. M.; Liu, S. L.; Zhang, Y. W.; Dong, J. Y.; Ji, Y. L.; Guo, Y.; Wu, X. C.; Zhang, X. D.; Wang, R. Y. Nonlinear amplification of chirality in self-assembled plasmonic nanostructures. ACS Nano 2021, 15, 5715–5724.

[35]

Bi, Y. T.; Cheng, C. K.; Zhang, Z. Z.; Liu, R. J.; Wei, J. J.; Yang, Z. J. Controlled hierarchical self-assembly of nanoparticles and chiral molecules into tubular nanocomposites. J. Am. Chem. Soc. 2023, 145, 8529–8539.

[36]

Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515.

[37]

Lan, X.; Chen, Z.; Dai, G. L.; Lu, X. X.; Ni, W. H.; Wang, Q. B. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 2013, 135, 11441–11444.

[38]

Song, C. Y.; Blaber, M. G.; Zhao, G. P.; Zhang, P. J.; Fry, H. C.; Schatz, G. C.; Rosi, N. L. Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures. Nano Lett. 2013, 13, 3256–3261.

[39]

Negrín-Montecelo, Y.; Movsesyan, A.; Gao, J.; Burger, S.; Wang, Z. M.; Nlate, S.; Pouget, E.; Oda, R.; Comesaña-Hermo, M.; Govorov, A. O. et al. Chiral generation of hot carriers for polarization-sensitive plasmonic photocatalysis. J. Am. Chem. Soc. 2022, 144, 1663–1671.

[40]

Kim, Y.; Yeom, B.; Arteaga, O.; Jo Yoo, S.; Lee, S. G.; Kim, J. G.; Kotov, N. A. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro-to the nanoscale. Nat. Mater. 2016, 15, 461–468.

[41]

Jeong, K. J.; Lee, D. K.; Tran, V. T.; Wang, C. F.; Lv, J. W.; Park, J.; Tang, Z. Y.; Lee, J. Helical magnetic field-induced real-time plasmonic chirality modulation. ACS Nano 2020, 14, 7152–7160.

[42]

Kim, J. Y.; Yeom, J.; Zhao, G. P.; Calcaterra, H.; Munn, J.; Zhang, P. J.; Kotov, N. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 2019, 141, 11739–11744.

[43]

Zhao, D. P.; van Leeuwen, T.; Cheng, J. L.; Feringa, B. L. Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nat. Chem. 2017, 9, 250–256.

[44]

Liu, R. J.; Feng, Z. Y.; Yan, X. Y.; Lv, Y. J.; Wei, J. J.; Hao, J. C.; Yang, Z. J. Small molecules mediated the chirality transfer in self-assembled nanocomposites with strong circularly polarized luminescence. J. Am. Chem. Soc. 2023, 145, 17274–17283.

[45]

Cheng, G. Q.; Xu, D.; Lu, Z. Y.; Liu, K. Chiral self-assembly of nanoparticles induced by polymers synthesized via reversible addition-fragmentation chain transfer polymerization. ACS Nano 2019, 13, 1479–1489.

[46]

Jiang, W. G.; Pacella, M. S.; Athanasiadou, D.; Nelea, V.; Vali, H.; Hazen, R. M.; Gray, J. J.; McKee, M. D. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun. 2017, 8, 15066.

[47]

Yan, J.; Feng, W. C.; Kim, J. Y.; Lu, J.; Kumar, P.; Mu, Z. Z.; Wu, X. C.; Mao, X. M.; Kotov, N. A. Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. Chem. Mater. 2020, 32, 476–488.

[48]

Mao, X.; Wang, Z. Y.; Zeng, D. P.; Cao, H.; Zhan, Y.; Wang, Y.; Li, Q. F.; Shen, Y. T.; Wang, J. F. Self-assembled chiral nanoparticle superstructures and identification of their collective optical activity from ligand asymmetry. ACS Nano 2019, 13, 2879–2887.

[49]

Shen, C. Q.; Lan, X.; Zhu, C. G.; Zhang, W.; Wang, L. Y.; Wang, Q. B. Spiral patterning of au nanoparticles on au nanorod surface to form chiral aunr@aunp helical superstructures templated by DNA origami. Adv. Mater. 2017, 29, 1606533.

[50]

Merg, A. D.; Boatz, J. C.; Mandal, A.; Zhao, G. P.; Mokashi-Punekar, S.; Liu, C.; Wang, X. T.; Zhang, P. J.; van der Wel, P. C. A.; Rosi, N. L. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 2016, 138, 13655–13663.

[51]

Shopsowitz, K. E.; Qi, H.; Hamad, W. Y.; MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 2010, 468, 422–425.

[52]

Duan, T. W.; Ai, J.; Duan, Y. Y.; Han, L.; Che, S. N. Self-assembly of chiral nematic-like films with chiral nanorods directed by chiral molecules. Chem. Mater. 2021, 33, 6227–6232.

[53]

Yan, W. J.; Xu, L. G.; Xu, C. L.; Ma, W.; Kuang, H.; Wang, L. B.; Kotov, N. A. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 2012, 134, 15114–15121.

[54]

Jin, Y. R.; Xiao, C. Y.; Tan, L. L.; Chen, Z.; Wen, Z. H.; Cheng, Y.; Fu, W. L.; Wang, P. P. Self-assembled chiral copper superstructures with enhanced circularly polarized light emission. Adv. Opt. Mater. 2023, 11, 2203068.

[55]

Yang, Y.; Liang, J.; Pan, F.; Wang, Z.; Zhang, J. Q.; Amin, K.; Fang, J.; Zou, W. J.; Chen, Y. L.; Shi, X. H. et al. Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nat. Commun. 2018, 9, 3808.

[56]

Yun, G.; Besford, Q. A.; Johnston, S. T.; Richardson, J. J.; Pan, S. J.; Biviano, M.; Caruso, F. Self-assembly of nano- to macroscopic metal-phenolic materials. Chem. Mater. 2018, 30, 5750–5758.

[57]

Giner-Casares, J. J.; Reguera, J. Directed self-assembly of inorganic nanoparticles at air/liquid interfaces. Nanoscale 2016, 8, 16589–16595.

[58]

Hou, S.; Bai, L.; Lu, D. R.; Duan, H. W. Interfacial colloidal self-assembly for functional materials. Acc. Chem. Res. 2023, 56, 740–751.

[59]
Li, Y. Y.; Liang, D. Y. T.; Wang, R. M.; Yang, S. Z.; Liu, W. S.; Sang, Q.; Pu, J.; Wang, Y. N.; Qian, K. Interfacial self-assembly nanostructures: Constructions and applications. Small 2024 , 2405318, in press, https://doi.org/10.1002/smll.202405318.
[60]

Li, X.; Chen, C.; Niu, Q.; Li, N. W.; Yu, L.; Wang, B. Self-assembly of nanoparticles at solid–liquid interface for electrochemical capacitors. Rare Met. 2022, 41, 3591–3611.

[61]

Stammitti-Scarpone, A.; Acosta, E. J. Solid–liquid–liquid wettability and its prediction with surface free energy models. Adv. Colloid Interface Sci. 2019, 264, 28–46.

[62]

Koshkina, O.; Raju, L. T.; Kaltbeitzel, A.; Riedinger, A.; Lohse, D.; Zhang, X. H.; Landfester, K. Surface properties of colloidal particles affect colloidal self-assembly in evaporating self-lubricating ternary droplets. ACS Appl. Mater. Interfaces 2022, 14, 2275–2290.

[63]

Maestro, A.; Guzmán, E.; Ortega, F.; Rubio, R. G. Contact angle of micro-and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 355–367.

[64]

Fan, Q. S.; Li, Z. W.; Li, Y. C.; Gao, A. Q.; Zhao, Y. Z.; Yang, D.; Zhu, C. H.; Brinzari, T. V.; Xu, G. F.; Pan, L. et al. Unveiling enhanced electrostatic repulsion in silica nanosphere assembly: Formation dynamics of body-centered-cubic colloidal crystals. J. Am. Chem. Soc. 2023, 145, 28191–28203.

[65]

Cai, J. R.; Zhang, W.; Xu, L. G.; Hao, C. L.; Ma, W.; Sun, M. Z.; Wu, X. L.; Qin, X.; Colombari, F. M.; de Moura, A. F. et al. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nat. Nanotechnol. 2022, 17, 408–416.

[66]

Lv, J. W.; Hou, K.; Ding, D. F.; Wang, D. W.; Han, B.; Gao, X. Q.; Zhao, M.; Shi, L.; Guo, J.; Zheng, Y. L. et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew. Chem., Int. Ed. 2017, 56, 5055–5060.

[67]

Zhang, S. M.; Shi, W. X.; Rong, S. J.; Li, S. Z.; Zhuang, J.; Wang, X. Chirality evolution from sub-1 nanometer nanowires to the macroscopic helical structure. J. Am. Chem. Soc. 2020, 142, 1375–1381.

[68]

Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270.

[69]

Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477.

[70]

Marmur, A. Interfaces at equilibrium: A guide to fundamentals. Adv. Colloid Interface Sci. 2017, 244, 164–173.

[71]

Ghoufi, A.; Malfreyt, P.; Tildesley, D. J. Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chem. Soc. Rev. 2016, 45, 1387–1409.

[72]
Pan, Z. Q.; Trusler, J. P. M.; Jin, Z. J.; Zhang, K. Q. Interfacial property determination from dynamic pendant-drop characterizations. Nat. Protoc. 2024 , in press, https://doi.org/10.1038/s41596-024-01049-0.
[73]

Udayabhaskararao, T.; Altantzis, T.; Houben, L.; Coronado-Puchau, M.; Langer, J.; Popovitz-Biro, R.; Liz-Marzán, L. M.; Vuković, L.; Král, P.; Bals, S. et al. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 2017, 358, 514–518.

[74]

Shi, S. W.; Russell, T. P. Nanoparticle assembly at liquid-liquid interfaces: From the nanoscale to mesoscale. Adv. Mater. 2018, 30, 1800714.

[75]

Ji, L.; Guo, G. N.; Sheng, H. Y.; Qin, S. L.; Wang, B. W.; Han, D. D.; Li, T. T.; Yang, D.; Dong, A. G. Free-standing, ordered mesoporous few-layer graphene framework films derived from nanocrystal superlattices self-assembled at the solid-or liquid-air interface. Chem. Mater. 2016, 28, 3823–3830.

[76]

Yang, X. K.; Lv, J. W.; Zhang, J.; Shen, T. X.; Xing, T. Y.; Qi, F. L.; Ma, S. H.; Gao, X. Q.; Zhang, W.; Tang, Z. Y. Tunable circularly polarized luminescence from inorganic chiral photonic crystals doped with quantum dots. Angew. Chem., Int. Ed. 2022, 61, e202201674.

[77]

Singh, G.; Chan, H.; Udayabhaskararao, T.; Gelman, E.; Peddis, D.; Baskin, A.; Leitus, G.; Král, P.; Klajn, R. Magnetic field-induced self-assembly of iron oxide nanocubes. Faraday Discuss. 2015, 181, 403–421.

[78]

Gaines, G. L. Langmuir-blodgett films of long-chain amines. Nature 1982, 298, 544–545.

[79]

Tao, A. R.; Huang, J. X.; Yang, P. D. Langmuir-blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 2008, 41, 1662–1673.

[80]

Bodik, M.; Maxian, O.; Hagara, J.; Nadazdy, P.; Jergel, M.; Majkova, E.; Siffalovic, P. Langmuir-scheaffer technique as a method for controlled alignment of 1D materials. Langmuir 2020, 36, 4540–4547.

[81]

Wong, K. P. Optical rotary dispersion and circular dichroism. J. Chem. Educ. 1974, 51, A573.

[82]

Andrews, S. S.; Tretton, J. Physical principles of circular dichroism. J. Chem. Educ. 2020, 97, 4370–4376.

[83]

Lv, J. W.; Ding, D. F.; Yang, X. K.; Hou, K.; Miao, X.; Wang, D. W.; Kou, B. C.; Huang, L.; Tang, Z. Y. Biomimetic chiral photonic crystals. Angew. Chem., Int. Ed. 2019, 58, 7783–7787.

[84]

Burrows, N. D.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Lin, W.; Li, J.; Dennison, J. M.; Hinman, J. G.; Murphy, C. J. Anisotropic nanoparticles and anisotropic surface chemistry. J. Phys. Chem. Lett. 2016, 7, 632–641.

[85]

Huang, Z. F.; Liu, J. J. Chiroptically active metallic nanohelices with helical anisotropy. Small 2017, 13, 1701883.

[86]

Chen, L. J.; Hao, C. L.; Cai, J. R.; Chen, C.; Ma, W.; Xu, C. L.; Xu, L. G.; Kuang, H. Chiral self-assembled film from semiconductor nanorods with ultra-strong circularly polarized luminescence. Angew. Chem., Int. Ed. 2021, 60, 26276–26280.

[87]

Singh, G.; Chan, H.; Baskin, A.; Gelman, E.; Repnin, N.; Král, P.; Klajn, R. Self-assembly of magnetite nanocubes into helical superstructures. Science 2014, 345, 1149–1153.

[88]

Chen, C.; Tran, J.; McFadden, A.; Simmonds, R.; Saito, K.; Chu, E. D.; Morales, D.; Suezaki, V.; Hou, Y. S.; Aumentado, J. et al. Signatures of a spin-active interface and a locally enhanced zeeman field in a superconductor-chiral material heterostructure. Sci. Adv. 2024, 10, eado4875.

[89]

Zhang, X. Y.; Dai, X. B.; Gao, L. J.; Xu, D.; Wan, H. X.; Wang, Y. M.; Yan, L. T. The entropy-controlled strategy in self-assembling systems. Chem. Soc. Rev. 2023, 52, 6806–6837.

[90]

Saito, K.; Nemoto, Y.; Ishikawa, Y. Circularly polarized light-induced chiral growth of achiral plasmonic nanoparticles dispersed in a solution. Nano Lett. 2024, 24, 12840–12848.

[91]

Saito, K.; Tatsuma, T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 2018, 18, 3209–3212.

[92]

Ghalawat, M.; Feferman, D.; Besteiro, L. V.; He, W. T.; Movsesyan, A.; Muravitskaya, A.; Valdez, J.; Moores, A.; Wang, Z. M.; Ma, D. L. et al. Chiral symmetry breaking in colloidal metal nanoparticle solutions by circularly polarized light. ACS Nano 2024, 18, 28279–28291.

[93]

Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G. P.; Chang, W. S.; Chang, S. J.; Chuvilin, A. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 2015, 14, 66–72.

[94]

Chen, Y. L.; Zheng, J. P.; Zhang, L. L.; Li, S. S.; Chen, Y.; Chui, K. K.; Zhang, W.; Shao, L.; Wang, J. F. Inversion of the chiroptical responses of chiral gold nanoparticles with a gold film. ACS Nano 2024, 18, 383–394.

[95]

Fazel-Najafabadi, A.; Schuster, S.; Auguié, B. Orientation averaging of optical chirality near nanoparticles and aggregates. Phys. Rev. B 2021, 103, 115405.

[96]

Li, W. B.; Zhang, C.; Wang, Y. R. Evaporative self-assembly in colloidal droplets: Emergence of ordered structures from complex fluids. Adv. Colloid Interface Sci. 2024, 333, 103286.

[97]

Zhang, C.; Lu, W. H.; Xu, Y. F.; Zeng, K. Y.; Ho, G. W. Mechanistic formulation of inorganic membranes at the air-liquid interface. Nature 2023, 616, 293–299.

[98]

Li, Q.; Jonas, U.; Zhao, X. S.; Kappl, M. The forces at work in colloidal self-assembly: A review on fundamental interactions between colloidal particles. Asia-Pac. J. Chem. Eng. 2008, 3, 255–268.

[99]

Kralchevsky, P. A.; Denkov, N. D. Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 2001, 6, 383–401.

[100]

Li, S. J.; Sun, Y. W.; Li, Z. W. Two-step chirality transfer to twisted assemblies: Synergistic interplay of chiral and aggregation interactions. ACS Nano 2024, 18, 26560–26567.

[101]

Meng, D.; Li, C.; Hao, C. L.; Shi, W. X.; Xu, J.; Sun, M. Z.; Kuang, H.; Xu, C. L.; Xu, L. G. Interfacial self-assembly of chiral selenide nanomembrane for enantiospecific recognition. Angew. Chem., Int. Ed. 2023, 62, e202311416.

[102]

Meng, D.; Hao, C. L.; Cai, J. R.; Ma, W.; Chen, C.; Xu, C. L.; Xu, L. G.; Kuang, H. Tailored chiral copper selenide nanochannels for ultrasensitive enantioselective recognition and detection. Angew. Chem., Int. Ed. 2021, 60, 24997–25004.

[103]

Cai, J. R.; Zhao, J.; Gao, X. Q.; Ma, W.; Meng, D.; Zhang, H. Y.; Hao, C. L.; Sun, M. Z.; Kuang, H.; Xu, C. L. et al. Magnetic field tuning ionic current generated by chiromagnetic nanofilms. ACS Nano 2022, 16, 11066–11075.

[104]

Cai, J. R.; Liu, A. A.; Shi, X. H.; Fu, H. H.; Zhao, W.; Xu, L. G.; Kuang, H.; Xu, C. L.; Pang, D. W. Enhancing circularly polarized luminescence in quantum dots through chiral coordination-mediated growth at the liquid/liquid interface. J. Am. Chem. Soc. 2023, 145, 24375–24385.

[105]

Duan, T. W.; Ai, J.; Cui, X. Y.; Feng, X. W.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Spontaneous chiral self-assembly of cdse@cds nanorods. Chem 2021, 7, 2695–2707.

[106]

Zhang, F. H.; Zhang, Z. Z.; Liu, R. J.; Wei, J. J.; Yang, Z. J. Functional droplets stabilized by interfacially self-assembled chiral nanocomposites. Angew. Chem., Int. Ed. 2022, 61, e202206520.

[107]

Qu, D.; Rojas, O. J.; Wei, B.; Zussman, E. Responsive chiral photonic cellulose nanocrystal materials. Adv. Opt. Mater. 2022, 10, 2201201.

[108]

Parton, T. G.; Parker, R. M.; van de Kerkhof, G. T.; Narkevicius, A.; Haataja, J. S.; Frka-Petesic, B.; Vignolini, S. Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nat. Commun. 2022, 13, 2657.

[109]

Gonçalves, D. P. N.; Hegmann, T. Chirality transfer from an innately chiral nanocrystal core to a nematic liquid crystal: Surface-modified cellulose nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 17344–17349.

[110]

Wang, C. X.; Tang, C. M.; Wang, Y. F.; Shen, Y. H.; Qi, W.; Zhang, T.; Su, R. X.; He, Z. M. Chiral photonic materials self-assembled by cellulose nanocrystals. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101017.

[111]

Tran, A.; Boott, C. E.; MacLachlan, M. J. Understanding the self-assembly of cellulose nanocrystals-toward chiral photonic materials. Adv. Mater. 2020, 32, 1905876.

[112]

Xiong, R.; Yu, S. T.; Smith, M. J.; Zhou, J.; Krecker, M.; Zhang, L. J.; Nepal, D.; Bunning, T. J.; Tsukruk, V. V. Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials. ACS Nano 2019, 13, 9074–9081.

[113]

Xu, M. C.; Wu, X. Y.; Yang, Y.; Ma, C. H.; Li, W.; Yu, H. P.; Chen, Z. J.; Li, J.; Zhang, K.; Liu, S. X. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence. ACS Nano 2020, 14, 11130–11139.

[114]

Lv, J. W.; Yang, X. K.; Tang, Z. Y. Rational design of all-inorganic assemblies with bright circularly polarized luminescence. Adv. Mater. 2023, 35, 2209539.

[115]

Querejeta-Fernández, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 2014, 136, 4788–4793.

[116]

Häkkinen, H. The gold-sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443–455.

[117]

Pacchioni, G. A not-so-strong bond. Nat. Rev. Mater. 2019, 4, 226–226.

[118]

Zhao, X. L.; Xu, L. G.; Sun, M. Z.; Ma, W.; Wu, X. L.; Xu, C. L.; Kuang, H. Tuning the interactions between chiral plasmonic films and living cells. Nat. Commun. 2017, 8, 2007.

[119]

Zhou, S.; Li, J. H.; Lu, J.; Liu, H. H.; Kim, J. Y.; Kim, A.; Yao, L. H.; Liu, C.; Qian, C.; Hood, Z. D. et al. Chiral assemblies of pinwheel superlattices on substrates. Nature 2022, 612, 259–265.

[120]

Cheng, Z. H.; Jones, M. R. Assembly of planar chiral superlattices from achiral building blocks. Nat. Commun. 2022, 13, 4207.

[121]

Esmann, M.; Becker, S. F.; Witt, J.; Zhan, J. X.; Chimeh, A.; Korte, A.; Zhong, J. H.; Vogelgesang, R.; Wittstock, G.; Lienau, C. Vectorial near-field coupling. Nat. Nanotechnol. 2019, 14, 698–704.

[122]

Allard, T. F.; Weick, G. Quantum theory of plasmon polaritons in chains of metallic nanoparticles: From near-to far-field coupling regime. Phys. Rev. B 2021, 104, 125434.

[123]

Kiselev, A.; Martin, O. J. F. Controlling the magnetic and electric responses of dielectric nanoparticles via near-field coupling. Phys. Rev. B 2022, 106, 205413.

[124]

Hu, L.; Sun, Z. G.; Nie, Y. D.; Huang, Y. Z.; Fang, Y. R. Plasmonic and photonic enhancement of chiral near-fields. Laser Photonics Rev. 2022, 16, 2200035.

[125]

Jiang, N. N.; Zhuo, X. L.; Wang, J. F. Active plasmonics: Principles, structures, and applications. Chem. Rev. 2018, 118, 3054–3099.

[126]

Wang, W. J.; Ramezani, M.; Väkeväinen, A. I.; Törmä, P.; Rivas, J. G.; Odom, T. W. The rich photonic world of plasmonic nanoparticle arrays. Mater. Today 2018, 21, 303–314.

[127]

Staubach, J.; Hasse, H.; Stephan, S. Helmholtz energy models for dipole interactions: Review and comprehensive assessment. Fluid Phase Equilib. 2024, 585, 114168.

[128]

Fernique, F.; Weick, G. Plasmons in two-dimensional lattices of near-field coupled nanoparticles. Phys. Rev. B 2020, 102, 045420.

[129]

Zhao, Q.; Zhang, H. J.; Zhou, Z. K.; Wang, X. H. Enhancing chiroptical responses in the nanoparticle system by manipulating the far-field and near-field couplings. Opt. Express 2023, 31, 9376–9386.

[130]

Nicoletti, O.; de la Peña, F.; Leary, R. K.; Holland, D. J.; Ducati, C.; Midgley, P. A. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 2013, 502, 80–84.

[131]

Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097.

[132]

Picardi, M. F.; Neugebauer, M.; Eismann, J. S.; Leuchs, G.; Banzer, P.; Rodríguez-Fortuño, F. J.; Zayats, A. V. Experimental demonstration of linear and spinning Janus dipoles for polarisation-and wavelength-selective near-field coupling. Light: Sci. Appl. 2019, 8, 52.

[133]

Lemkul, J. A.; Huang, J.; Roux, B.; MacKerell, A. D. An empirical polarizable force field based on the classical drude oscillator model: Development history and recent applications. Chem. Rev. 2016, 116, 4983–5013.

[134]

Cui, X. Y.; Shtukenberg, A. G.; Freudenthal, J.; Nichols, S.; Kahr, B. Circular birefringence of banded spherulites. J. Am. Chem. Soc. 2014, 136, 5481–5490.

[135]

Ye, H. M.; Xu, J.; Freudenthal, J.; Kahr, B. On the circular birefringence of polycrystalline polymers: Polylactide. J. Am. Chem. Soc. 2011, 133, 13848–13851.

[136]

Muskens, O. L.; Borgström, M. T.; Bakkers, E. P. A. M.; Gómez Rivas, J. Giant optical birefringence in ensembles of semiconductor nanowires. Appl. Phys. Lett. 2006, 89, 233117.

[137]

de Heer, W. A.; Bacsa, W. S.; Châtelain, A.; Gerfin, T.; Humphrey-Baker, R.; Forro, L.; Ugarte, D. Aligned carbon nanotube films: Production and optical and electronic properties. Science 1995, 268, 845–847.

[138]

Crassous, J. Chiral transfer in coordination complexes: Towards molecular materials. Chem. Soc. Rev. 2009, 38, 830–845.

[139]

Ma, S.; Ahn, J.; Moon, J. Chiral perovskites for next-generation photonics: From chirality transfer to chiroptical activity. Adv. Mater. 2021, 33, 2005760.

[140]

Crassous, J. Transfer of chirality from ligands to metal centers: Recent examples. Chem. Commun. 2012, 48, 9687–9695.

[141]

Gao, H.; Zhan, C. L.; Zhao, T. Q.; Zheng, J. Z. Chirality transfer induced circularly polarized luminescence of achiral dye molecules by plasmonic nanohelicoid. Nano Res. 2024, 17, 8408–8414.

[142]

Zhang, D.; Zheng, H. Z.; Ma, X. T.; Su, L. N.; Gao, X. Q.; Tang, Z. Y.; Xu, Y. On-demand circularly polarized room-temperature phosphorescence in chiral nematic nanoporous silica films. Adv. Opt. Mater. 2022, 10, 2102015.

[143]

Xu, L. G.; Sun, M. Z.; Cheng, P.; Gao, R.; Wang, H.; Ma, W.; Shi, X. H.; Xu, C. L.; Kuang, H. 2D chiroptical nanostructures for high-performance photooxidants. Adv. Funct. Mater. 2018, 28, 1707237.

[144]

Feng, Z. Y.; He, C. L.; Xie, Y. F.; Zhang, C. T.; Li, J. H.; Liu, D. D.; Jiang, Z. F.; Chen, X.; Zou, G. Chiral biosensing at both interband transition and plasmonic extinction regions using twisted-stacked nanowire arrays. Nanoscale 2022, 14, 10524–10530.

[145]

Yao, X.; Hu, Y. W.; Cao, B.; Peng, R.; Ding, J. D. Effects of surface molecular chirality on adhesion and differentiation of stem cells. Biomaterials 2013, 34, 9001–9009.

[146]

Zhou, C.; Zhang, S. Y.; Ai, J.; Li, P.; Zhao, Y. J.; Li, B. J.; Han, L.; Duan, Y. Y.; Che, S. N. Enantioselective interaction between cells and chiral hydroxyapatite films. Chem. Mater. 2022, 34, 53–62.

[147]

Wang, M.; Dong, J. Y.; Zhou, C.; Xie, H.; Ni, W. H.; Wang, S.; Jin, H. L.; Wang, Q. B. Reconfigurable plasmonic diastereomers assembled by DNA origami. ACS Nano 2019, 13, 13702–13708.

[148]

Zhang, S. M.; Shi, W. X.; Siegler, T. D.; Gao, X. Q.; Ge, F.; Korgel, B. A.; He, Y.; Li, S. Z.; Wang, X. An all-inorganic colloidal nanocrystal flexible polarizer. Angew. Chem. Int. Ed. 2019, 58, 8730–8735.

Nano Research
Article number: 94907158
Cite this article:
Yan W, Wang X, Pang D-W, et al. Interface-driven self-assembly: A robust strategy for chiral generation and amplification in inorganic nanomaterials. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907158
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return