Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photothermal CO2 hydrogenation is a promising route to produce methanol as a sustainable liquid solar fuel. However, most existing catalysts require a combination of solar irradiation and additional heat input to achieve a satisfactory reaction rate. For the few that can be driven solely by light, their reaction rates are one order of magnitude lower. We develop a photothermal catalyst with multilevel interfaces that achieves improved methanol production from photothermal CO2 hydrogenation without external heat. The catalyst features a layered structure comprising Cu/ZnO/Al2O3 (CZA) covered by oxidized carbon black (oCB), where the oCB/CZA interface promotes efficient heat generation and transfer, and the Cu/oxide interface contributes to high catalytic activity. Under a mild pressure of 8 bar, our oCB/CZA catalyst shows a methanol selectivity of 64.7% with a superior production rate of 4.91 mmol gcza-1 h-1, at least one order of magnitude higher than other photothermal catalysts solely driven by light. This work demonstrates a photothermal catalyst design strategy for liquid solar fuel production.
146
Views
27
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
© The author(s) 2025
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made.
See https://creativecommons.org/licenses/by/4.0/