AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (29.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Application of quantum dots in cancer diagnosis and treatment: Advances and perspectives

Mei Li1,§Yan Huang2,§Chen Shen1,§Yiqing Wang1Yue'ai Lin1Zejun Wang3 ( )Nan Chen2 ( )Yao Luo1 ( )
Department of Laboratory Medicine, and Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu 610041, China
College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai 200234, China
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China

§ Mei Li, Yan Huang, and Chen Shen contributed equally to this work.

Show Author Information

Graphical Abstract

This review summarized quantum dots (QDs) used as versatile tools in cancer diagnosis and therapy owing to their tunable fluorescence emission wavelengths, high photostability, and high quantum yields. Their functionalization enables precise imaging and detection of tumor biomarkers, and allows for targeted drug delivery and therapy, enhancing the specificity and efficacy of cancer treatment.

Abstract

Quantum dots (QDs) are semiconductor nanocrystals with diameters ranging from 2 to 10 nanometers. The development of QDs has greatly advanced nanotechnology, and this achievement was recognized with the awarding of the 2023 Nobel Prize in Chemistry. They have gained significant attention in the field of biomedical applications due to their high adjustability, stability, sensitivity, and selectivity. QDs have proven to be suitable for in vivo bioimaging and tracking, medical diagnostics, and drug delivery systems. Their exceptional attributes, like high brightness, resistance to photobleaching, and multiplexing capability, combined with a high surface-to-volume ratio, make them ideal for these applications. Their unique optical and electronic properties can be precisely controlled by adjusting the size and material composition. By modifying their surface or encapsulating them, QDs can be conjugated with specific biomolecules, enabling the visualization and quantitative analysis of target entities. The ability to externally manipulate QDs through magnetic fields, electric fields, acoustic waves, or temperature changes enhances their utility in targeted drug delivery and therapy. In the context of cancer, a leading cause of global mortality with increasing incidence rates, QDs offer innovative approaches to diagnosis, treatment, and prevention strategies. This review summarizes the cutting-edge applications of QDs in cancer, providing insights into the mechanisms and strategies used. It also critically evaluates the advantages and limitations of QDs, including their toxicity profile. The discussion concludes with a perspective on the technical advancements needed to enhance the clinical applicability of QDs and identifies upcoming challenges in their journey towards widespread biomedical use.

References

[1]

Singh, S.; Raina, D.; Rishipathak, D.; Babu, K. R.; Khurana, R.; Gupta, Y.; Garg, K.; Rehan, F.; Gupta, S. M. Quantum dots in the biomedical world: A smart advanced nanocarrier for multiple venues application. Arch Pharm 2022, 355, 2200299.

[2]

Soldado, A.; Barrio, L. C.; Díaz-Gonzalez, M.; de la Escosura-Muñiz, A.; Costa-Fernandez, J. M. Advances in quantum dots as diagnostic tools. Adv. Clin. Chem. 2022, 107, 1–40.

[3]

Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924.

[4]

Onoshima, D.; Yukawa, H.; Baba, Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv. Drug Deliv. Rev. 2015, 95, 2–14.

[5]

Gill, R.; Zayats, M.; Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem., Int. Ed. 2008, 47, 7602–7625.

[6]

Jin, Z. W.; Hildebrandt, N. Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol. 2012, 30, 394–403.

[7]

Suárez, P. L.; García-Cortés, M.; Fernández-Argüelles, M. T.; Encinar, J. R.; Valledor, M.; Ferrero, F. J.; Campo, J. C.; Costa-Fernández, J. M. Functionalized phosphorescent nanoparticles in (bio)chemical sensing and imaging - a review. Anal. Chim. Acta 2019, 1046, 16–31.

[8]

Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Single-quantum-dot-based DNA nanosensor. Nat Mater 2005, 4, 826–831.

[9]

Chu, T. C.; Shieh, F.; Lavery, L. A.; Levy, M.; Richards-Kortum, R.; Korgel, B. A.; Ellington, A. D. Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens Bioelectron. 2006, 21, 1859–1866.

[10]

Abdellatif, A. A. H.; Younis, M. A.; Alsharidah, M.; Al Rugaie, O.; Tawfeek, H. M. Biomedical applications of quantum dots: Overview, challenges, and clinical potential. Int. J. Nanomed. 2022, 17, 1951–1970.

[11]

Hildebrandt, N. Biofunctional quantum dots: Controlled conjugation for multiplexed biosensors. ACS Nano 2011, 5, 5286–5290.

[12]

Sanderson, K.; Castelvecchi, D. Tiny ‘quantum dot’ particles win chemistry Nobel. Nature 2023, 622, 227–228.

[13]

Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088.

[14]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[15]

Bruchez, M. Jr. ; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

[16]

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

[17]

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

[18]

Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635.

[19]

Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.

[20]

Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

[21]

Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.

[22]

Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18.

[23]

Utzat, H.; Sun, W. W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, 1068–1072.

[24]

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

[25]

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

[26]

Yang, Y.; Lian, T. Q. Multiple exciton dissociation and hot electron extraction by ultrafast interfacial electron transfer from PbS QDs. Coord. Chem. Rev. 2014, 263-264, 229–238.

[27]

Bhaskar, S.; Patra, R.; Kowshik, N. C. S. S.; Ganesh, K. M.; Srinivasan, V.; Chandran, S. P.; Ramamurthy, S. S. Nanostructure effect on quenching and dequenching of quantum emitters on surface plasmon-coupled interface: A comparative analysis using gold nanospheres and nanostars. Phys. E: Low-Dimension. Syst. Nanostruct. 2020, 124, 114276.

[28]

Kwak, D. H.; Ramasamy, P.; Lee, Y. S.; Jeong, M. H.; Lee, J. S. High-performance hybrid InP QDs/black phosphorus photodetector. ACS Appl. Mater. Interfaces 2019, 11, 29041–29046.

[29]

Yuan, S.; Chen, D. Q.; Li, X. Y.; Zhong, J. S.; Xu, X. H. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918–18926.

[30]

Chi, W. G.; Banerjee, S. K. Application of perovskite quantum dots as an absorber in perovskite solar cells. Angew. Chem., Int. Ed. 2022, 61, e202112412.

[31]

Erwin, S. C.; Efros, A. L. Electronic transport in quantum-dot-in-perovskite solids. Nanoscale 2022, 14, 17725–17734.

[32]

Zhou, Q. X.; Yue, Z. K.; Li, Q. Z.; Zhou, R. R.; Liu, L. Exposure to PbSe nanoparticles and male reproductive damage in a rat model. Environ. Sci. Technol. 2019, 53, 13408–13416.

[33]

Okamura, Y.; Shimizu, R.; Tominaga, Y.; Maki, S.; Aki, T.; Matsumura, Y.; Nakashimada, Y. Characterization of biogenic PbS quantum dots. Int. J. Mol. Sci. 2023, 24, 14149.

[34]

Gao, L. F.; Wang, L. D.; Kuklin, A. V.; Gao, J.; Yin, S. C.; Ågren, H.; Zhang, H. A facile approach for elemental-doped carbon quantum dots and their application for efficient photodetectors. Small 2021, 17, 2105683.

[35]

Li, Z.; Zhao, C. Y.; Fu, Q. R.; Ye, J. M.; Su, L. C.; Ge, X. G.; Chen, L. L.; Song, J. B.; Yang, H. H. Neodymium (3+)-coordinated black phosphorus quantum dots with retrievable NIR/X-ray optoelectronic switching effect for anti-glioblastoma. Small 2022, 18, 2105160.

[36]

Majumdar, S.; Gogoi, D.; Boruah, P. K.; Thakur, A.; Sarmah, P.; Gogoi, P.; Sarkar, S.; Pachani, P.; Manna, P.; Saikia, R. et al. Hexagonal boron nitride quantum dots embedded on layer-by-layer films for peroxidase-assisted colorimetric detection of β-galactosidase producing pathogens. ACS Appl. Mater. Interfaces 2024, 16, 26870–26885.

[37]

Wang, H.; Pu, G. Q.; Devaramani, S.; Wang, Y. F.; Yang, Z. F.; Li, L. F.; Ma, X. F.; Lu, X. Q. Bimodal electrochemiluminescence of G-CNQDs in the presence of double coreactants for ascorbic acid detection. Anal. Chem. 2018, 90, 4871–4877.

[38]

Perini, G.; Palmieri, V.; Ciasca, G.; De Spirito, M.; Papi, M. Unravelling the potential of graphene quantum dots in biomedicine and neuroscience. Int. J. Mol. Sci. 2020, 21, 3712.

[39]

Sobhanan, J.; Rival, J. V.; Anas, A.; Sidharth Shibu, E.; Takano, Y.; Biju, V. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Adv. Drug Delivery Rev. 2023, 197, 114830.

[40]

Ding, X. G.; Peng, F.; Zhou, J.; Gong, W. B.; Slaven, G.; Loh, K. P.; Lim, C. T.; Leong, D. T. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 2019, 10, 41.

[41]

Das, P.; Sedighi, A.; Krull, U. J. Cancer biomarker determination by resonance energy transfer using functional fluorescent nanoprobes. Anal. Chim. Acta 2018, 1041, 1–24.

[42]

Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

[43]

Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 2005, 127, 3870–3878.

[44]

Bharali, D. J.; Lucey, D. W.; Jayakumar, H.; Pudavar, H. E.; Prasad, P. N. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc. 2005, 127, 11364–11371.

[45]

Boeneman, K.; Mei, B. C.; Dennis, A. M.; Bao, G.; Deschamps, J. R.; Mattoussi, H.; Medintz, I. L. Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J. Am. Chem. Soc. 2009, 131, 3828–3829.

[46]

Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P. Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 2002, 124, 6378–6382.

[47]

Ostermann, J.; Merkl, J. P.; Flessau, S.; Wolter, C.; Kornowksi, A.; Schmidtke, C.; Pietsch, A.; Kloust, H.; Feld, A.; Weller, H. Controlling the physical and biological properties of highly fluorescent aqueous quantum dots using block copolymers of different size and shape. ACS Nano 2013, 7, 9156–9167.

[48]

Bernardin, A.; Cazet, A.; Guyon, L.; Delannoy, P.; Vinet, F.; Bonnaffé, D.; Texier, I. Copper-free click chemistry for highly luminescent quantum dot conjugates: Application to in vivo metabolic imaging. Bioconjugate Chem. 2010, 21, 583–588.

[49]

Li, F.; Wang, Q. B. Fabrication of nanoarchitectures templated by virus-based nanoparticles: Strategies and applications. Small 2014, 10, 230–245.

[50]

Siegel, R. L.; Miller, K. D.; Wagle, N. S.; Jemal, A. Cancer statistics, 2023. CA: Cancer J. Clinicians 2023, 73, 17–48.

[51]

Siegel, R. L.; Miller, K. D.; Fedewa, S. A.; Ahnen, D. J.; Meester, R. G. S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA: Cancer J. Clin. 2017, 67, 177–193.

[52]

Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L. H.; Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510.

[53]

Kauczor, H. U.; Baird, A. M.; Blum, T. G.; Bonomo, L.; Bostantzoglou, C.; Burghuber, O.; Čepická, B.; Comanescu, A.; Couraud, S.; Devaraj, A. et al. ESR/ERS statement paper on lung cancer screening. Eur. Radiol. 2020, 30, 3277–3294.

[54]

Burggraaf, J.; Kamerling, I. M. C.; Gordon, P. B.; Schrier, L.; de Kam, M. L.; Kales, A. J.; Bendiksen, R.; Indrevoll, B.; Bjerke, R. M.; Moestue, S. A. et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med. 2015, 21, 955–961.

[55]

Bera, K.; Schalper, K. A.; Rimm, D. L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715.

[56]

Calderaro, J.; Ziol, M.; Paradis, V.; Zucman-Rossi, J. Molecular and histological correlations in liver cancer. J. Hepatol. 2019, 71, 616–630.

[57]

Lehrich, B. M.; Zhang, J.; Monga, S. P.; Dhanasekaran, R. Battle of the biopsies: Role of tissue and liquid biopsy in hepatocellular carcinoma. J. Hepatol. 2024, 80, 515–530.

[58]

Huang, A.; Zhao, X.; Yang, X. R.; Li, F. Q.; Zhou, X. L.; Wu, K.; Zhang, X.; Sun, Q. M.; Cao, Y.; Zhu, H. M. et al. Corrigendum to "Circumventing intratumoral heterogeneity to identify potential therapeutic targets in hepatocellular carcinoma" [J Hepatol 67 (2017) 293–301]. J. Hepatol. 2017, 67, 1123.

[59]

Wang, Y. A.; Yan, Q. J.; Fan, C. M.; Mo, Y. Z.; Wang, Y. M.; Li, X. Y.; Liao, Q. J.; Guo, C.; Li, G. Y.; Zeng, Z. Y. et al. Overview and countermeasures of cancer burden in China. Sci. China Life Sci. 2023, 66, 2515–2526.

[60]

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

[61]

Luo, D. D.; Carter, K. A.; Miranda, D.; Lovell, J. F. Chemophototherapy: An emerging treatment option for solid tumors. Adv. Sci. 2017, 4, 1600106.

[62]

Chou, S. W.; Shau, Y. H.; Wu, P. C.; Yang, Y. S.; Shieh, D. B.; Chen, C. C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc. 2010, 132, 13270–13278.

[63]

Yong, K. T.; Ding, H.; Roy, I.; Law, W. C.; Bergey, E. J.; Maitra, A.; Prasad, P. N. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009, 3, 502–510.

[64]

Dash, P.; Piras, A. M.; Dash, M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J. Control. Release 2020, 327, 546–570.

[65]

Kargozar, S.; Hoseini, S. J.; Milan, P. B.; Hooshmand, S.; Kim, H. W.; Mozafari, M. Quantum dots: A review from concept to clinic. Biotechnol. J. 2020, 15, 2000117.

[66]

Abdelhamid, H. N.; El-Bery, H. M.; Metwally, A. A.; Elshazly, M.; Hathout, R. M. Synthesis of CdS-modified chitosan quantum dots for the drug delivery of Sesamol. Carbohydr. Polym. 2019, 214, 90–99.

[67]

Zhang, J.; Zhang, X. Y.; Bi, S. Two-dimensional quantum dot-based electrochemical biosensors. Biosensors 2022, 12, 254.

[68]

Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 2017, 117, 536–711.

[69]

Colino, C. I.; Millán, C. G.; Lanao, J. M. Nanoparticles for signaling in biodiagnosis and treatment of infectious diseases. Int. J. Mol. Sci. 2018, 19, 1627.

[70]

Tawfik, S. M.; Huy, B. T.; Sharipov, M.; Abd-Elaal, A.; Lee, Y. I. Enhanced fluorescence of CdTe quantum dots capped with a novel nonionic alginate for selective optosensing of ibuprofen. Sens. Actuators B: Chem. 2018, 256, 243–250.

[71]

Qian, Z. S.; Shan, X. Y.; Chai, L. J.; Chen, J. R.; Feng, H. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens. Bioelectron. 2015, 68, 225–231.

[72]

Li, C. X.; Yang, Q.; Wang, X. Y.; Arabi, M.; Peng, H. L.; Li, J. H.; Xiong, H.; Chen, L. X. Facile approach to the synthesis of molecularly imprinted ratiometric fluorescence nanosensor for the visual detection of folic acid. Food Chem. 2020, 319, 126575.

[73]

Fu, X. M.; Tan, X. R.; Yuan, R.; Chen, S. H. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Biosens. Bioelectron. 2017, 90, 61–68.

[74]

Hu, J.; Li, Y. Y.; Li, Y.; Tang, B.; Zhang, C. Y. Single quantum dot-based nanosensor for sensitive detection of O–GlcNAc transferase activity. Anal. Chem. 2017, 89, 12992–12999.

[75]

Wang, Y.; Howes, P. D.; Kim, E.; Spicer, C. D.; Thomas, M. R.; Lin, Y. Y.; Crowder, S. W.; Pence, I. J.; Stevens, M. M. Duplex-specific nuclease-amplified detection of MicroRNA using compact quantum dot-DNA conjugates. ACS Appl. Mater. Interfaces 2018, 10, 28290–28300.

[76]

Augustine, R.; Al Mamun, A.; Hasan, A.; Salam, S. A.; Chandrasekaran, R.; Ahmed, R.; Thakor, A. S. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv. Colloid Interface Sci. 2021, 294, 102457.

[77]

Campbell, E.; Hasan, M. T.; Gonzalez Rodriguez, R.; Akkaraju, G. R.; Naumov, A. V. Doped graphene quantum dots for intracellular multicolor imaging and cancer detection. ACS Biomater. Sci. Eng. 2019, 5, 4671–4682.

[78]

Ren, X.; Zhang, F.; Guo, B. P.; Gao, N.; Zhang, X. L. Synthesis of N-doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging. Nanomaterials (Basel) 2019, 9, 495.

[79]

Feng, S. X.; Li, H. L.; Pan, J. Q.; Li, C. R.; Zheng, Y. Y. Preparation and cell imaging of nitrogen-doped graphene quantum dot conjugated indomethacin. IOP Conf. Ser.: Earth Environ. Sci. 2019, 358, 032006.

[80]
Nifontova, G.; Baryshnikova, M.; Ramos-Gomes, F.; Alves, F.; Nabiev, I.; Sukhanova, A. Engineering of fluorescent biomaging tools for cancer cell targeting based on polyelectrolyte microcapsules encoded with quantum dots. In Proceedings of the Fourth International Conference on Applications of Optics and Photonics, Lisbon, Portugal, 2019, pp 516–521.
[81]

Liu, B.; Jiang, B.; Zheng, Z. P.; Liu, T. C. Semiconductor quantum dots in tumor research. J. Lumin. 2019, 209, 61–68.

[82]

Wu, X. Y.; Liu, H. J.; Liu, J. Q.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N. F.; Peale, F.; Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41–46.

[83]

Xue, W. T.; Di, Z. H.; Zhao, Y.; Zhang, A. P.; Li, L. L. DNA-mediated coordinative assembly of upconversion hetero-nanostructures for targeted dual-modality imaging of cancer cells. Chin. Chem. Lett. 2019, 30, 899–902.

[84]

Li, Z. M.; Huang, P.; He, R.; Lin, J.; Yang, S.; Zhang, X. J.; Ren, Q. S.; Cui, D. X. Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mater. Lett. 2010, 64, 375–378.

[85]

Mangeolle, T.; Yakavets, I.; Lequeux, N.; Pons, T.; Bezdetnaya, L.; Marchal, F. The targeting ability of fluorescent quantum dots to the folate receptor rich tumors. Photodiagnosis Photodyn. Ther. 2019, 26, 150–156.

[86]

Yang, Y. Q.; Qian, X. P.; Zhang, L. H.; Miao, W. J.; Ming, D. M.; Jiang, L.; Huang, H. Enhanced imaging of glycan expressing cancer cells using poly(glycidyl methacrylate)-grafted silica nanospheres labeled with quantum dots. Anal. Chim. Acta 2020, 1095, 138–145.

[87]

Rana, M.; Jain, A.; Rani, V.; Chowdhury, P. Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorg. Chem. Commun. 2020, 112, 107723.

[88]

Fu, Y.; Jang, M. S.; Wu, T. P.; Lee, J. H.; Li, Y.; Lee, D. S.; Yang, H. Y. Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydr. Polym. 2019, 224, 115174.

[89]

Pons, T.; Bouccara, S.; Loriette, V.; Lequeux, N.; Pezet, S.; Fragola, A. In vivo imaging of single tumor cells in fast-flowing bloodstream using near-infrared quantum dots and time-gated imaging. ACS Nano 2019, 13, 3125–3131.

[90]

Duman, F. D.; Akkoc, Y.; Demirci, G.; Bavili, N.; Kiraz, A.; Gozuacik, D.; Acar, H. Y. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag2S quantum dots. J. Mater. Chem. B 2019, 7, 7363–7376.

[91]

Liang, Z. B.; Yang, Y. Q.; Jia, F. J.; Sai, K.; Ullah, S.; Fidelis, C.; Lin, Z.; Li, F. Intrathecal delivery of folate conjugated near-infrared quantum dots for targeted in vivo imaging of gliomas in mice brains. ACS Appl. Bio Mater. 2019, 2, 1432–1439.

[92]

Townsend, D. W.; Carney, J. P. J.; Yap, J. T.; Hall, N. C. PET/CT today and tomorrow. J. Nucl. Med. 2004, 45, 4S–14S.

[93]
Delso, G.; Ziegler, S. PET/MRI system design. Eur. J. Nucl. Med. Mol. Imaging 2009 , 36 Suppl 1, S86–S92.
[94]

Sk Md, N.; Kim, H. K.; Park, J. A.; Chang, Y. M.; Kim, T. J. Gold nanoparticles coated with Gd-chelate as a potential CT/MRI bimodal contrast agent. Bull. Korean Chem. Soc. 2010, 31, 1177–1181.

[95]

Guo, K.; Berezin, M. Y.; Zheng, J.; Akers, W.; Lin, F.; Teng, B.; Vasalatiy, O.; Gandjbakhche, A.; Griffiths, G. L.; Achilefu, S. Near infrared-fluorescent and magnetic resonance imaging molecular probe with high T1 relaxivity for in vivo multimodal imaging. Chem. Commun. 2010, 46, 3705–3707.

[96]

Mulder, W. J. M.; Koole, R.; Brandwijk, R. J.; Storm, G.; Chin, P. T. K.; Strijkers, G. J.; de Mello Donegá, C.; Nicolay, K.; Griffioen, A. W. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett. 2006, 6, 1–6.

[97]

Prasad, R.; Jain, N. K.; Yadav, A. S.; Chauhan, D. S.; Devrukhkar, J.; Kumawat, M. K.; Shinde, S.; Gorain, M.; Thakor, A. S.; Kundu, G. C. et al. Liposomal nanotheranostics for multimode targeted in vivo bioimaging and near-infrared light mediated cancer therapy. Commun. Biol. 2020, 3, 284.

[98]

Wu, L.; Qu, X. G. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev. 2015, 44, 2963–2997.

[99]

Mathur, D.; Thakur, M.; Díaz, S. A.; Susumu, K.; Stewart, M. H.; Oh, E.; Walper, S. A.; Medintz, I. L. Hybrid nucleic acid-quantum dot assemblies as multiplexed reporter platforms for cell-free transcription translation-based biosensors. ACS Synth. Biol. 2022, 11, 4089–4102.

[100]

Wang, P.; Wei, X. W.; Shen, L. M.; Xu, K. X.; Wen, Z. T.; Gao, N. J.; Fan, T.; Xun, S. M.; Zhu, Q. Y.; Qu, X. J. et al. Amplification-free analysis of bladder cancer MicroRNAs on wrinkled silica nanoparticles with DNA-functionalized quantum dots. Anal. Chem. 2024, 96, 4860–4867.

[101]

Min, H.; Jo, S. M.; Kim, H. S. Efficient capture and simple quantification of circulating tumor cells using quantum dots and magnetic beads. Small 2015, 11, 2536–2542.

[102]

Lian, W.; Tu, D. T.; Hu, P.; Song, X. R.; Gong, Z. L.; Chen, T.; Song, J. B.; Chen, Z.; Chen, X. Y. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today 2020, 35, 100943.

[103]

Wu, M.; Chen, Z. K.; Xie, Q. H.; Xiao, B. L.; Zhou, G.; Chen, G.; Bian, Z. One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification. Biosens. Bioelectron. 2021, 171, 112733.

[104]

Chen, P. P.; Li, M.; Peng, W.; Liu, T. Y. H.; Huang, J.; Ying, B. W. Multiple signal amplification and selective recognition reactions-assisted homogeneous binary visual aptasensor of tuberculosis interferon γ in clinical samples. Sens. Actuators B: Chem. 2023, 376, 132997.

[105]

Riegler, J.; Nann, T. Application of luminescent nanocrystals as labels for biological molecules. Anal. Bioanal. Chem. 2004, 379, 913–919.

[106]

Xiao, S. T.; Yao, Y.; Liao, S. L.; Xu, B.; Li, X.; Zhang, Y. X.; Zhang, L.; Chen, Q.; Tang, H. N.; Song, Q. B. et al. Accurate and convenient lung cancer diagnosis through detection of extracellular vesicle membrane proteins via förster resonance energy transfer. Nano Lett. 2023, 23, 8115–8125.

[107]

Yang, T.; Li, C. M.; He, J. H.; Chen, B.; Li, Y. F.; Huang, C. Z. Ratiometrically fluorescent electrospun nanofibrous film as a Cu2+-mediated solid-phase immunoassay platform for biomarkers. Anal. Chem. 2018, 90, 9966–9974.

[108]

Sun, Y. L.; Fan, J. F.; Cui, L. Y.; Ke, W.; Zheng, F. J.; Zhao, Y. Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Microchim. Acta 2019, 186, 152.

[109]

Liu, W. J.; Song, R.; Yang, D. M.; Zhao, S. L.; Zhang, C. Y. A programmable quantum dot nanosensor guided by three-way junction skeleton-mediated cascade signal amplification for sensitive detection of circRNAs in breast cancer. Chem. Eng. J. 2024, 484, 149788.

[110]

Lee, T.; Jang, J.; Jeong, H.; Rho, J. Plasmonic- and dielectric-based structural coloring: From fundamentals to practical applications. Nano Converg. 2018, 5, 1.

[111]

Jia, P. D.; Ding, C. P.; Sun, Z. W.; Song, L. P.; Zhang, D.; Yan, Z. J.; Zhang, Z. L.; Su, F. M.; Mostafa, A. A.; Huang, Y. J. DNA precisely regulated Au nanorods/Ag2S quantum dots satellite structure for ultrasensitive detection of prostate cancer biomarker. Sens. Actuators B: Chem. 2021, 347, 130585.

[112]

Tabish, T. A.; Hayat, H.; Abbas, A.; Narayan, R. J. Graphene quantum dot-based electrochemical biosensing for early cancer detection. Curr. Opin. Electrochem. 2021, 30, 100786.

[113]

Nie, G. M.; Wang, Y.; Tang, Y.; Zhao, D.; Guo, Q. F. A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosens. Bioelectron. 2018, 101, 123–128.

[114]

Li, Z. R.; Wang, Z. Z.; Nie, Y. X.; Wang, P. L.; Ma, Q. A novel GSH-capping MXene QD-based ECL biosensor for the detection of miRNA221 in triple-negative breast cancer tumor. Chem. Eng. J. 2022, 448, 137636.

[115]

Pei, Y. J.; Ge, Y. H.; Zhang, X. R.; Li, Y. Cathodic photoelectrochemical aptasensor based on NiO/BiOI/Au NP composite sensitized with CdSe for determination of exosomes. Microchim. Acta 2021, 188, 51.

[116]

Mao, C. L.; Qin, Y.; Zhou, X. Y.; Dai, R. H.; Zhao, L. S. Late-model Bi-MOF&CdS-QDs materials: Excellent properties and performance in PEC sensors for lung cancer markers. Chem. Eng. J. 2024, 490, 151560.

[117]

Zhang, S. H.; Tang, X. M.; Zang, L. H.; Zhao, L. S. Carbon quantum dots(CQDs)-sensitized CdS/CuInS2 heterojunction as a photoelectrochemical biosensing platform for highly sensitive detection of prostate-specific antigen. Talanta 2024, 272, 125811.

[118]

Cayuela, A.; Soriano, M. L.; Carrillo-Carrión, C.; Valcárcel, M. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun. 2016, 52, 1311–1326.

[119]

Christodouleas, D. C.; Kaur, B.; Chorti, P. From point-of-care testing to eHealth diagnostic devices (eDiagnostics). ACS Cent. Sci. 2018, 4, 1600–1616.

[120]

Kim, C.; Hoffmann, G.; Searson, P. C. Integrated magnetic bead-quantum dot immunoassay for malaria detection. ACS Sens. 2017, 2, 766–772.

[121]

Medina-Sánchez, M.; Miserere, S.; Morales-Narváez, E.; Merkoçi, A. On-chip magneto-immunoassay for Alzheimer's biomarker electrochemical detection by using quantum dots as labels. Biosens. Bioelectron. 2014, 54, 279–284.

[122]

Bai, Y. N.; Lu, Y. X.; Wang, K.; Cheng, Z. L.; Qu, Y. L.; Qiu, S. H.; Zhou, L.; Wu, Z. H.; Liu, H. Y.; Zhao, J. L. et al. Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray. Nano-Micro Lett. 2019, 11, 59.

[123]

Zhou, S. S.; Hu, T.; Han, G. H.; Wu, Y. F.; Hua, X.; Su, J.; Jin, W. W.; Mou, Y. P.; Mou, X. Z.; Li, Q. et al. Accurate cancer diagnosis and stage monitoring enabled by comprehensive profiling of different types of exosomal biomarkers: Surface proteins and miRNAs. Small 2020, 16, 2004492.

[124]

Li, P. L.; Chen, J. C.; Chen, Y. Q.; Song, S. L.; Huang, X. W.; Yang, Y. R.; Li, Y.; Tong, Y.; Xie, Y.; Li, J. et al. Construction of exosome SORL1 detection platform based on 3D porous microfluidic chip and its application in early diagnosis of colorectal cancer. Small 2023, 19, 2207381.

[125]

Wang, C.; Wang, C. H.; Wu, Y.; Gao, J. W.; Han, Y. K.; Chu, Y. J.; Qiang, L.; Qiu, J. Y.; Gao, Y. K.; Wang, Y. H. et al. High-throughput, living single-cell, multiple secreted biomarker profiling using microfluidic chip and machine learning for tumor cell classification. Adv. Healthc. Mater. 2022, 11, 2102800.

[126]

Gong, M. M.; Sinton, D. Turning the page: Advancing paper-based microfluidics for broad diagnostic application. Chem. Rev. 2017, 117, 8447–8480.

[127]

Li, L. P.; Geng, Y. M.; Xiang, Y. H.; Qiang, H.; Wang, Y. X.; Chang, J. Q.; Zhao, H. N.; Zhang, L. Instrument-free enrichment and detection of phosphopeptides using paper-based Phos-PAD. Anal. Chim. Acta 2019, 1062, 102–109.

[128]

Narang, J.; Singhal, C.; Mathur, A.; Sharma, S.; Singla, V.; Pundir, C. S. Portable bioactive paper based genosensor incorporated with Zn–Ag nanoblooms for herpes detection at the point-of-care. Int. J. Biol. Macromol. 2018, 107, 2559–2565.

[129]

Seok, Y.; Batule, B. S.; Kim, M. G. Lab-on-paper for all-in-one molecular diagnostics (LAMDA) of zika, dengue, and chikungunya virus from human serum. Biosens. Bioelectron. 2020, 165, 112400.

[130]

Liu, Y. Q.; Li, R. Y.; Liang, F. Y.; Deng, C.; Seidi, F.; Xiao, H. N. Fluorescent paper-based analytical devices for ultra-sensitive dual-type RNA detections and accurate gastric cancer screening. Biosens. Bioelectron. 2022, 197, 113781.

[131]

Xia, Z. P.; Li, D.; Deng, W. Identification and detection of volatile aldehydes as lung cancer biomarkers by vapor generation combined with paper-based thin-film microextraction. Anal. Chem. 2021, 93, 4924–4931.

[132]

Ireta-Muñoz, L. A.; Morales-Narváez, E. Smartphone and paper-based fluorescence reader: A do it yourself approach. Biosensors (Basel) 2020, 10, 60.

[133]

Yang, M. Z.; Liu, Y.; Jiang, X. Y. Barcoded point-of-care bioassays. Chem. Soc. Rev. 2019, 48, 850–884.

[134]

Kim, J.; Biondi, M. J.; Feld, J. J.; Chan, W. C. W. Clinical validation of quantum dot barcode diagnostic technology. ACS Nano 2016, 10, 4742–4753.

[135]

Ming, K.; Kim, J.; Biondi, M. J.; Syed, A.; Chen, K.; Lam, A.; Ostrowski, M.; Rebbapragada, A.; Feld, J. J.; Chan, W. C. W. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano 2015, 9, 3060–3074.

[136]

Tran, M. V.; Susumu, K.; Medintz, I. L.; Algar, W. R. Supraparticle assemblies of magnetic nanoparticles and quantum dots for selective cell isolation and counting on a smartphone-based imaging platform. Anal. Chem. 2019, 91, 11963–11971.

[137]

Darwish, G. H.; Asselin, J.; Tran, M. V.; Gupta, R.; Kim, H.; Boudreau, D.; Algar, W. R. Fully self-assembled silica nanoparticle-semiconductor quantum dot supra-nanoparticles and immunoconjugates for enhanced cellular imaging by microscopy and smartphone camera. ACS Appl. Mater. Interfaces 2020, 12, 33530–33540.

[138]

Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 2017, 8, 737.

[139]

Sun, C. X.; Li, B. H.; Zhao, M. Y.; Wang, S. F.; Lei, Z. H.; Lu, L. F.; Zhang, H. X.; Feng, L. S.; Dou, C. R.; Yin, D. R. et al. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular Imaging beyond 1500 nm. J. Am. Chem. Soc. 2019, 141, 19221–19225.

[140]

Wang, X.; Guo, Z.; Zhang, C. Y.; Zhu, S.; Li, L. L.; Gu, Z. J.; Zhao, Y. L. Ultrasmall BiOI quantum dots with efficient renal clearance for enhanced radiotherapy of cancer. Adv. Sci. 2020, 7, 1902561.

[141]

Wang, P. Y.; Li, J. Q.; Wei, M.; Yang, R. Q.; Lou, K. L.; Dang, Y. Y.; Sun, W.; Xue, F. Q.; Liu, X. L. Tumor-microenvironment triggered signal-to-noise boosting nanoprobes for NIR-IIb fluorescence imaging guided tumor surgery and NIR-II photothermal therapy. Biomaterials 2022, 287, 121636.

[142]

Li, H.; Du, Z.; Zhu, L. J.; Zhang, C.; Xiong, J. B.; Zhou, B. S.; Dong, B.; Zhang, X. L.; Alifu, N. Ultrabright NIR-IIb fluorescence quantum dots for targeted imaging-guided surgery. ACS Appl. Mater. Interfaces 2024, 16, 32045–32057.

[143]

Weichselbaum, R. R.; Liang, H.; Deng, L. F.; Fu, Y. X. Radiotherapy and immunotherapy: A beneficial liaison. Nat. Rev. Clin. Oncol. 2017, 14, 365–379.

[144]

Li, H.; Wang, M.; Huang, B.; Zhu, S. W.; Zhou, J. J.; Chen, D. R.; Cui, R.; Zhang, M. X.; Sun, Z. J. Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis. Nat. Commun. 2021, 12, 7149.

[145]

Fan, W. P.; Tang, W.; Lau, J.; Shen, Z. Y.; Xie, J.; Shi, J. L.; Chen, X. Y. Breaking the depth dependence by nanotechnology-enhanced X-ray-excited deep cancer theranostics. Adv. Mater. 2019, 31, 1806381.

[146]

Zhang, J. M.; Chen, Y. X.; Fang, J. G. Targeting thioredoxin reductase by micheliolide contributes to radiosensitizing and inducing apoptosis of HeLa cells. Free Radic. Biol. Med. 2022, 186, 99–109.

[147]

Kaushik, N.; Kaushik, N. K.; Choi, E. H.; Kim, J. H. Blockade of cellular energy metabolism through 6-aminonicotinamide reduces proliferation of non-small lung cancer cells by inducing endoplasmic reticulum stress. Biology (Basel) 2021, 10, 1088.

[148]

Wang, Y. H.; Wei, Y. Z.; Wu, Y. C.; Zong, Y.; Song, Y. Y.; Pu, S. Y.; Wu, W. W.; Zhou, Y.; Xie, J.; Yin, H. T. Multifunctional nano-realgar hydrogel for enhanced glioblastoma synergistic chemotherapy and radiotherapy: A new paradigm of an old drug. Int. J. Nanomedicine 2023, 18, 743–763.

[149]

Liu, M.; Anderson, R. C.; Lan, X. L.; Conti, P. S.; Chen, K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med. Res. Rev. 2020, 40, 909–930.

[150]

Abrishami, A.; Bahrami, A. R.; Nekooei, S.; Sh Saljooghi, A.; Matin, M. M. Hybridized quantum dot, silica, and gold nanoparticles for targeted chemo-radiotherapy in colorectal cancer theranostics. Commun. Biol. 2024, 7, 393.

[151]

Wang, Y.; Gu, H. C. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv. Mater. 2015, 27, 576–585.

[152]

Chen, Y.; Yang, J.; Fu, S. Z.; Wu, J. B. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int. J. Nanomedicine 2020, 15, 9407–9430.

[153]

Kubli, S. P.; Berger, T.; Araujo, D. V.; Siu, L. L.; Mak, T. W. Beyond immune checkpoint blockade: Emerging immunological strategies. Nat. Rev. Drug Discov. 2021, 20, 899–919.

[154]

Yang, X. P.; Yang, C.; Zhang, S.; Geng, H. G.; Zhu, A. X.; Bernards, R.; Qin, W. X.; Fan, J.; Wang, C.; Gao, Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024, 42, 180–197.

[155]

Goldberg, M. S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 2019, 19, 587–602.

[156]

Martin, J. D.; Cabral, H.; Stylianopoulos, T.; Jain, R. K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 2020, 17, 251–266.

[157]

Li, J. C.; Cui, D.; Huang, J. G.; He, S. S.; Yang, Z. B.; Zhang, Y.; Luo, Y.; Pu, K. Y. Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 12680–12687.

[158]

Zhang, X. L.; Yi, C.; Zhang, L. J.; Zhu, X. Y.; He, Y.; Lu, H. Z.; Li, Y. M.; Tang, Y. Q.; Zhao, W.; Chen, G. S. et al. Size-optimized nuclear-targeting phototherapy enhances the type I interferon response for "cold" tumor immunotherapy. Acta Biomater. 2023, 159, 338–352.

[159]

Hou, L.; Chen, D. D.; Wang, R. T.; Wang, R. B.; Zhang, H. J.; Zhang, Z. Z.; Nie, Z. H.; Lu, S. Y. Transformable honeycomb-like nanoassemblies of carbon dots for regulated multisite delivery and enhanced antitumor chemoimmunotherapy. Angew. Chem., Int. Ed. 2021, 60, 6581–6592.

[160]

Chung, Y. J.; Kim, J.; Park, C. B. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 2020, 14, 6470–6497.

[161]

Kroemer, G.; Galassi, C.; Zitvogel, L.; Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 2022, 23, 487–500.

[162]

Meier, P.; Legrand, A. J.; Adam, D.; Silke, J. Immunogenic cell death in cancer: Targeting necroptosis to induce antitumour immunity. Nat. Rev. Cancer 2024, 24, 299–315.

[163]

Yang, Z.; Gao, D.; Zhao, J.; Yang, G. J.; Guo, M.; Wang, Y.; Ren, X. C.; Kim, J. S.; Jin, L.; Tian, Z. M. et al. Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 2023, 20, 116–134.

[164]

Li, Z.; Fu, Q. R.; Ye, J. M.; Ge, X. G.; Wang, J.; Song, J. B.; Yang, H. H. Ag+-coupled black phosphorus vesicles with emerging NIR-II photoacoustic imaging performance for cancer immune-dynamic therapy and fast wound healing. Angew. Chem., Int. Ed. 2020, 59, 22202–22209.

[165]

Zhao, J. Y.; Huang, H. B.; Zhao, J. Y.; Xiong, X.; Zheng, S. B.; Wei, X. Q.; Zhou, S. B. A hybrid bacterium with tumor-associated macrophage polarization for enhanced photothermal-immunotherapy. Acta Pharm. Sin. B 2022, 12, 2683–2694.

[166]

Chen, S. Z.; Saeed, A. F. U. H.; Liu, Q.; Jiang, Q.; Xu, H. Z.; Xiao, G. G.; Rao, L.; Duo, Y. Macrophages in immunoregulation and therapeutics. Sig. Transduct. Target. Ther. 2023, 8, 207.

[167]

Qian, M.; Chen, L. L.; Du, Y. L.; Jiang, H. L.; Huo, T. T.; Yang, Y. F.; Guo, W.; Wang, Y.; Huang, R. Q. Biodegradable mesoporous silica achieved via carbon nanodots-incorporated framework swelling for debris-mediated photothermal synergistic immunotherapy. Nano Lett. 2019, 19, 8409–8417.

[168]

Yang, M. X.; Li, H. Q.; Liu, X. C.; Huang, L.; Zhang, B. Y.; Liu, K. X.; Xie, W. N.; Cui, J.; Li, D. W.; Lu, L. J. et al. Fe-doped carbon dots: A novel biocompatible nanoplatform for multi-level cancer therapy. J. Nanobiotechnol. 2023, 21, 431.

[169]

He, L. Z.; Zhao, J. F.; Li, H. J.; Xie, B.; Xu, L. G.; Huang, G. N.; Liu, T.; Gu, Z.; Chen, T. F. Metabolic reprogramming of NK cells by black phosphorus quantum dots potentiates cancer immunotherapy. Adv. Sci. 2023, 10, 2202519.

[170]

Wu, C. H.; Guan, X. T.; Xu, J. M.; Zhang, Y. X.; Liu, Q. Y.; Tian, Y.; Li, S.; Qin, X.; Yang, H.; Liu, Y. Y. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials 2019, 205, 106–119.

[171]

Fang, Y. X.; Zhang, Z. P.; Liu, Y.; Gao, T.; Liang, S.; Chu, Q. H.; Guan, L.; Mu, W. W.; Fu, S. L.; Yang, H. Z. et al. Artificial assembled macrophage Co-deliver black phosphorus quantum dot and CDK4/6 inhibitor for colorectal cancer triple-therapy. ACS Appl. Mater. Interfaces 2022, 14, 20628–20640.

[172]

Hou, X. L.; Dai, X.; Yang, J.; Zhang, B.; Zhao, D. H.; Li, C. Q.; Yin, Z. Y.; Zhao, Y. D.; Liu, B. Injectable polypeptide-engineered hydrogel depot for amplifying the anti-tumor immune effect induced by chemo-photothermal therapy. J. Mater. Chem. B 2020, 8, 8623–8633.

[173]

Tison, A.; Garaud, S.; Chiche, L.; Cornec, D.; Kostine, M. Immune-checkpoint inhibitor use in patients with cancer and pre-existing autoimmune diseases. Nat. Rev. Rheumatol. 2022, 18, 641–656.

[174]

Doroshow, D. B.; Bhalla, S.; Beasley, M. B.; Sholl, L. M.; Kerr, K. M.; Gnjatic, S.; Wistuba, I. I.; Rimm, D. L.; Tsao, M. S.; Hirsch, F. R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362.

[175]

Liang, X.; Ye, X. Y.; Wang, C.; Xing, C. Y.; Miao, Q. W.; Xie, Z. J.; Chen, X. L.; Zhang, X. D.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 2019, 296, 150–161.

[176]

Zhao, P. Q.; Xu, Y. L.; Ji, W.; Zhou, S. Y.; Li, L. F.; Qiu, L. H.; Qian, Z. Z.; Wang, X. H.; Zhang, H. L. Biomimetic black phosphorus quantum dots-based photothermal therapy combined with anti-PD-L1 treatment inhibits recurrence and metastasis in triple-negative breast cancer. J. Nanobiotechnol. 2021, 19, 181.

[177]

Yuan, X. Y.; Ruan, W.; Bobrow, B.; Carmeliet, P.; Eltzschig, H. K. Targeting hypoxia-inducible factors: Therapeutic opportunities and challenges. Nat. Rev. Drug Discovery 2024, 23, 175–200.

[178]

Zhou, X. F.; Meng, Z. Q.; She, J. L.; Zhang, Y. J.; Yi, X.; Zhou, H. L.; Zhong, J.; Dong, Z. L.; Han, X.; Chen, M. C. et al. Near-infrared light-responsive nitric oxide delivery platform for enhanced radioimmunotherapy. Nano-Micro Lett. 2020, 12, 100.

[179]

Lundberg, J. O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878.

[180]

Wang, Z. X.; Jin, A.; Yang, Z.; Huang, W. Advanced nitric oxide generating nanomedicine for therapeutic applications. ACS Nano 2023, 17, 8935–8965.

[181]

Saxena, M.; van der Burg, S. H.; Melief, C. J. M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378.

[182]

Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science 2018, 359, 1355–1360.

[183]

Liu, Q.; Fan, T. J.; Zheng, Y. Y.; Yang, S. L.; Yu, Z. Q.; Duo, Y. H.; Zhang, Y. H.; Adah, D.; Shi, L. L.; Sun, Z. et al. Immunogenic exosome-encapsulated black phosphorus nanoparticles as an effective anticancer photo-nanovaccine. Nanoscale 2020, 12, 19939–19952.

[184]

Ye, X. Y.; Liang, X.; Chen, Q.; Miao, Q. W.; Chen, X. L.; Zhang, X. D.; Mei, L. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano 2019, 13, 2956–2968.

[185]

Shankar, L. K.; Schöder, H.; Sharon, E.; Wolchok, J.; Knopp, M. V.; Wahl, R. L.; Ellingson, B. M.; Hall, N. C.; Yaffe, M. J.; Towbin, A. J. et al. Harnessing imaging tools to guide immunotherapy trials: Summary from the National Cancer Institute Cancer Imaging Steering Committee workshop. Lancet Oncol. 2023, 24, e133–e143.

[186]

Zhang, Y. Y.; Wang, T. G.; Tian, Y.; Zhang, C. N.; Ge, K.; Zhang, J. C.; Chang, J.; Wang, H. J. Gold nanorods-mediated efficient synergistic immunotherapy for detection and inhibition of postoperative tumor recurrence. Acta Pharm. Sin. B 2021, 11, 1978–1992.

[187]

Ma, X. B.; Mao, M. C.; He, J. Q.; Liang, C.; Xie, H. Y. Nanoprobe-based molecular imaging for tumor stratification. Chem. Soc. Rev. 2023, 52, 6447–6496.

[188]

Liu, J.; Li, C. N.; Brans, T.; Harizaj, A.; Van de Steene, S.; De Beer, T.; De Smedt, S.; Szunerits, S.; Boukherroub, R.; Xiong, R. H. et al. Surface functionalization with polyethylene glycol and polyethyleneimine improves the performance of graphene-based materials for safe and efficient intracellular delivery by laser-induced photoporation. Int. J. Mol. Sci. 2020, 21, 1540.

[189]

Xiong, R. H.; Sauvage, F.; Fraire, J. C.; Huang, C. B.; De Smedt, S. C.; Braeckmans, K. Photothermal nanomaterial-mediated photoporation. Acc. Chem. Res. 2023, 56, 631–643.

[190]

Liu, J.; Xiong, R. H.; Brans, T.; Lippens, S.; Parthoens, E.; Zanacchi, F. C.; Magrassi, R.; Singh, S. K.; Kurungot, S.; Szunerits, S. et al. Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light: Sci. Appl. 2018, 7, 47.

[191]

Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322–1331.

[192]

Yu, G. T.; Luo, M. Y.; Li, H.; Chen, S.; Huang, B.; Sun, Z. J.; Cui, R.; Zhang, M. X. Molecular targeting nanoprobes with non-overlap emission in the second near-infrared window for in vivo two-color colocalization of immune cells. Acs Nano 2019, 13, 12830–12839.

[193]

Zhang, D. G.; Wu, H. L.; Wang, T. C.; Wang, Y. T.; Liu, S. X.; Wen, F. Q.; Oudeng, G.; Yang, M. Self-driven immune checkpoint blockade and spatiotemporal-sensitive immune response monitoring in acute myeloid leukemia using an all-in-one turn-on bionanoprobe. J. Mater. Chem. B 2023, 11, 10613–10624.

[194]

Hong, M. H.; Clubb, J. D.; Chen, Y. Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 2020, 38, 473–488.

[195]

Hao, X. X.; Li, C. Y.; Zhang, Y. J.; Wang, H. Z.; Chen, G. C.; Wang, M.; Wang, Q. B. Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1804437.

[196]

Li, H. M.; Yang, X. X.; Wang, Z. C.; She, W. Y.; Liu, Y.; Huang, L.; Jiang, P. A near-infrared-II fluorescent nanocatalyst for enhanced CAR T cell therapy against solid tumor by immune reprogramming. ACS Nano 2023, 17, 11749–11763.

[197]

Sun, J. L.; Liu, F.; Yu, W. Q.; Fu, D. D.; Jiang, Q. Y.; Mo, F. Y.; Wang, X. Y.; Shi, T. H.; Wang, F. A.; Pang, D. W. et al. Visualization of vaccine dynamics with quantum dots for immunotherapy. Angew. Chem. 2021, 133, 24477–24485.

[198]

Donahue, N. D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Delivery Rev. 2019, 143, 68–96.

[199]

Ma, Z. R.; Wang, F. F.; Zhong, Y. T.; Salazar, F.; Li, J. C.; Zhang, M. X.; Ren, F. Q.; Wu, A. M.; Dai, H. J. Cross-link-functionalized nanoparticles for rapid excretion in nanotheranostic applications. Angew. Chem. 2020, 132, 20733–20741.

[200]

Lv, Z. Y.; Wang, Y.; Chen, J. R.; Wang, J. J.; Zhou, Y.; Han, S. T. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 2020, 120, 3941–4006.

[201]

Jia, Z. X.; Shi, C.; Yang, X. T.; Zhang, J. R.; Sun, X.; Guo, Y. M.; Ying, X. G. QD-based fluorescent nanosensors: Production methods, optoelectronic properties, and recent food applications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4644–4669.

[202]

Li, W.; Kaminski Schierle, G. S.; Lei, B. F.; Liu, Y. L.; Kaminski, C. F. Fluorescent nanoparticles for super-resolution imaging. Chem. Rev. 2022, 122, 12495–12543.

[203]

Pirzada, M.; Altintas, Z. Nanomaterials for virus sensing and tracking. Chem. Soc. Rev. 2022, 51, 5805–5841.

[204]

Ye, J. Z.; Gaur, D.; Mi, C. J.; Chen, Z. J.; Fernández, I. L.; Zhao, H. T.; Dong, Y. T.; Polavarapu, L.; Hoye, R. L. Z. Strongly-confined colloidal lead-halide perovskite quantum dots: From synthesis to applications. Chem. Soc. Rev. 2024, 53, 8095–8122.

[205]

Liu, X. Y.; Wu, W. J.; Cui, D. X.; Chen, X. Y.; Li, W. W. Functional micro-/nanomaterials for multiplexed biodetection. Adv. Mater. 2021, 33, 2004734.

[206]

Liu, H. Y.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Single-virus tracking with quantum dots in live cells. Nat. Protoc. 2023, 18, 458–489.

[207]

Karakoti, A. S.; Shukla, R.; Shanker, R.; Singh, S. Surface functionalization of quantum dots for biological applications. Adv. Colloid Interface Sci. 2015, 215, 28–45.

Nano Research
Article number: 94907163
Cite this article:
Li M, Huang Y, Shen C, et al. Application of quantum dots in cancer diagnosis and treatment: Advances and perspectives. Nano Research, 2025, 18(1): 94907163. https://doi.org/10.26599/NR.2025.94907163
Topics:

200

Views

30

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 September 2024
Revised: 13 November 2024
Accepted: 29 November 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return