Rational design of nanomedicine can efficiently improve the therapeutic activity of anticancer drugs; however, the current design strategies are to increase the concentration of drugs within targeted cells, which is not applicable to extracellular-targeted drugs. Herein, we report a nanoparticular aggregation strategy via magnetic actuation and host–guest interaction for extracellular drug delivery. The β-cyclodextrin (βCD)-decorated magnetic nanoparticles (βCD-MNPs) were first administrated and infiltrated into tumor tissue under the magnetic actuation, and then generated mild hyperthermia under alternating magnetic field (AMF) to improve the infiltration of another adamantane (Ad)-decorated NPs (Ad-NPs) into the tumor tissue. Subsequently, the βCD-MNP and Ad-NP would form micro-sized aggregation via the host–guest interaction, which could significantly enhance the enrichment and retention of extracellular-targeted drugs and also minimize their cellular uptake. This nanoparticular aggregation strategy remarkably improved the therapeutic activity of batimastat and PD-1/PD-L1 inhibitor 1 (BMS-1), both of which were extracellular-targeted drug. Such nanoparticular aggregation strategy represents a rational avenue for extracellular drug delivery.
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.
Wu, J. Y.; Pu, K. Y. Leveraging semiconducting polymer nanoparticles for combination cancer immunotherapy. Adv. Mater. 2024, 36, 2308924.
Yang, G.; Pan, X. X.; Feng, W. B.; Yao, Q. F.; Jiang, F. Y.; Du, F. L.; Zhou, X. F.; Xie, J. P.; Yuan, X. Engineering Au44 nanoclusters for NIR-II luminescence imaging-guided photoactivatable cancer immunotherapy. ACS Nano 2023, 17, 15605–15614.
Huang, J.; Liu, X. L.; Lin, M. Z.; Xiao, Z. C.; & Shuai, X. T. Light-inducible nanodrug-mediated photodynamic and anti-apoptotic synergy for enhanced immunotherapy in triple-negative breast cancer. Biomater. Sci. 2024, 12, 2639–2647.
Pang, X. R.; Fu, C. P.; Chen, J. B.; Su, M.; Wei, R. L.; Wang, Y.; Lin, W. X.; Wei, X. H.; Jiang, X. Q.; Yang, X. Z. et al. A manganese-phenolic network platform amplifying STING activation to potentiate MRI guided cancer chemo-/chemodynamic/immune therapy. Biomater. Sci. 2023, 11, 3840–3850.
Yu, H.; Wang, Q.; Zhang, X. M.; Tiemuer, A.; Wang, J.; Zhang, Y. Y.; Sun, X. L.; Liu, Y. Hot-band absorption assisted single-photon frequency upconversion luminescent nanophotosensitizer for 808 nm light triggered photodynamic immunotherapy of cancer. Biomater. Sci. 2023, 11, 2167–2176.
Wang, S.; Zhang, F. W.; Yu, G. C.; Wang, Z. T.; Jacobson, O.; Ma, Y.; Tian, R.; Deng, H. Z.; Yang, W. J.; Chen, Z. Y. et al. Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery. Theranostics 2020, 10, 6629–6637.
He, Y. J.; Su, Z. G.; Xue, L. J.; Xu, H.; Zhang, C. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J. Control. Release 2016, 229, 80–92.
Du, J. Z.; Sun, T. M.; Song, W. J.; Wu, J.; Wang, J. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew. Chem., Int. Ed. 2010, 49, 3621–3626.
Zhu, Y. Q.; Song, Y. H.; Cao, Z. Y.; Dong, L.; Shen, S.; Lu, Y.; Yang, X. Z. A magnetically driven amoeba-like nanorobot for whole-process active drug transport. Adv. Sci. 2023, 10, 2204793.
Yu, W. Q.; Liu, R.; Zhou, Y.; Gao, H. L. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 2020, 6, 100–116.
Liang, M. Y.; Zhang, M. J.; Qiu, W.; Xiao, Y.; Ye, M. J.; Xue, P.; Kang, Y. J.; Sun, Z. J.; Xu, Z. G. Stepwise size shrinkage cascade-activated supramolecular prodrug boosts antitumor immunity by eliciting pyroptosis. Adv. Sci. 2022, 9, 2203353.
Zhu, S. S.; Gao, H.; Li, W. Y.; He, X. C.; Jiang, P. P.; Xu, F.; Jin, G. R.; Guo, H. Stimuli-responsive aptamer-drug conjugates for targeted drug delivery and controlled drug release. Adv. Healthc. Mater. 2024, 13, 2401020.
Wei, D. S.; Sun, Y.; Zhu, H.; Fu, Q. R. Stimuli-responsive polymer-based nanosystems for cancer theranostics. ACS Nano 2023, 17, 23223–23261.
Ding, D. D.; Mei, Z. H.; Huang, H.; Feng, W.; Chen, L.; Chen, Y.; Zhou, J. Q. Oxygen-independent sulfate radical for stimuli-responsive tumor nanotherapy. Adv. Sci. 2022, 9, 2200974.
Yan, X.; Li, K.; Xie, T. Q.; Jin, X. K.; Zhang, C.; Li, Q. R.; Feng, J.; Liu, C. J.; Zhang, X. Z. Bioorthogonal “click and release” reaction-triggered aggregation of gold nanoparticles combined with released lonidamine for enhanced cancer photothermal therapy. Angew. Chem., Int. Ed. 2024, 63, e202318539.
Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.
Price, L. S. L.; Stern, S. T.; Deal, A. M.; Kabanov, A. V.; Zamboni, W. C. A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Sci. Adv. 2020, 6, eaay9249.
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine. J. Control. Release 2016, 244, 108–121.
You, Q. Y.; Hu, M. D.; Qian, H. Advanced nanoarchitectonics of drug delivery systems with pyroptosis inhibition for noncancerous disease treatment. Adv. Funct. Mater. 2024, 34, 2315199.
Kudryavtseva, V.; Sukhorukov, G. B. Features of anisotropic drug delivery systems. Adv. Mater. 2024, 36, 2307675.
Arévalo-Pérez, R.; Maderuelo, C.; Lanao, J. M. Recent advances in colon drug delivery systems. J. Control. Release 2020, 327, 703–724.
Cao, Z. Y.; Li, D. D.; Zhao, L.; Liu, M. T.; Ma, P. Y.; Luo, Y. L.; Yang, X. Z. Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery. Nat. Commun. 2022, 13, 2038.
Zhang, Y.; Zhao, G.; Chen, Y. F.; Zhou, S. K.; Wang, Y.; Sun, Y. Q.; Shen, S.; Xu, C. F.; Wang, J. Engineering nano-clustered multivalent agonists to cross-link TNF receptors for cancer therapy. Aggregate 2023, 4, e393.
Lao, X. Y.; Liu, Y.; Li, L. H.; Song, M. L.; Ma, Y. J.; Yang, M.; Chen, G. Y.; Hao, J. H. Plasmon-enhanced FRET biosensor based on Tm3+/Er3+ co-doped core–shell upconversion nanoparticles for ultrasensitive virus detection. Aggregate 2024, 5, e448.
Tang, S.; Meng, Q. S.; Sun, H. P.; Su, J. H.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Chen, L. L.; Chen, Y.; Gu, W. W. et al. Tumor-microenvironment-adaptive nanoparticles codeliver paclitaxel and siRNA to inhibit growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016, 26, 6033–6046.
Li, K.; Tay, F. R.; Yiu, C. K. Y. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol. Ther. 2020, 207, 107465.
de Almeida, L. G. N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix metalloproteinases: From molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 2022, 74, 712–768.
Sleeboom, J. J. F.; van Tienderen, G. S.; Schenke-Layland, K.; van der Laan, L. J. W.; Khalil, A. A.; Verstegen, M. M. A. The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci. Transl. Med. 2024, 16, eadg3840.
Li, D.; Chen, X. H.; Dai, W. B.; Jin, Q.; Wang, D.; Ji, J.; Tang, B. Z. Photo-triggered cascade therapy: A NIR-II AIE luminogen collaborating with nitric oxide facilitates efficient collagen depletion for boosting pancreatic cancer phototheranostics. Adv. Mater. 2024, 36, 2306476.
Wu, P. K.; Zhang, H. T.; Yin, Y.; Sun, M. L.; Mao, S.; Chen, H. H.; Deng, Y. X.; Chen, S.; Li, S.; Sun, B. C. Engineered EGCG-containing biomimetic nanoassemblies as effective delivery platform for enhanced cancer therapy. Adv. Sci. 2022, 9, 2105894.
Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.
Xin, Q.; Wang, D. J.; Wang, S. H.; Zhang, L. R.; Liang, Q.; Yan, X. Y.; Fan, K. L.; Jiang, B. Tackling esophageal squamous cell carcinoma with ITFn-Pt(IV): A novel fusion of PD-L1 blockade, chemotherapy, and T-cell activation. Adv. Healthc. Mater. 2024, 13, 2303623.
Wang, K. W.; Jiang, M. L.; Li, T.; Liu, Y.; Zong, Q. Y.; Xu, Q.; Ullah, I.; Chen, Y. H.; Xue, W.; Yuan, Y. Y. A synergistic chemoimmunotherapy system leveraging PD-L1 blocking and bioorthogonal prodrug activation. Adv. Mater. 2024, 36, 2402322.
Liang, S.; Xiao, L. Y.; Chen, T.; Roa, P.; Cocco, E.; Peng, Z. W.; Yu, L.; Wu, M. Y.; Liu, J.; Zhao, X. Z. et al. Injectable nanocomposite hydrogels improve intraperitoneal co-delivery of chemotherapeutics and immune checkpoint inhibitors for enhanced peritoneal metastasis therapy. ACS Nano 2024, 18, 18963–18979.
Cao, F. F.; Jin, L. L.; Gao, Y.; Ding, Y.; Wen, H. Y.; Qian, Z. F.; Zhang, C. Y.; Hong, L. J.; Yang, H.; Zhang, J. J. et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat. Nanotechnol. 2023, 18, 617–627.
Yang, H.; Yang, S. S.; Guo, Q. S.; Sheng, J. F.; Mao, Z. W. ATP-responsive manganese-based bacterial materials synergistically activate the cGAS-STING pathway for tumor immunotherapy. Adv. Mater. 2024, 36, 2310189.
Tizro, N.; Moniri, E.; Saeb, K.; Panahi, H. A.; Ardakani, S. S. Preparation and application of grafted β-cyclodextrin/thermo-sensitive polymer onto modified Fe3O4@SiO2 nano-particles for fenitrothion elimination from aqueous solution. Microchem. J. 2019, 145, 59–67.
Ke, Y.; Zhang, X. Y.; Liu, C. K.; Xiao, M.; Li, H.; Fan, J. C.; Fu, P. C.; Wang, S. H.; Zan, F.; Wu, G. Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery. Mater. Sci. Eng. C 2019, 99, 159–170.
Chen, X. H.; Wang, S.; Chen, Y. X.; Xin, H. H.; Zhang, S. S.; Wu, D.; Xue, Y. N.; Zha, M. L.; Li, H. J.; Li, K. et al. Non-invasive activation of intratumoural gene editing for improved adoptive T-cell therapy in solid tumours. Nat. Nanotechnol. 2023, 18, 933–944.
Wang, Q.; Liang, Q. R.; Dou, J. X.; Zhou, H.; Zeng, C. C.; Pan, H. M.; Shen, Y. Q.; Li, Q.; Liu, Y.; Leong, D. T. et al. Breaking through the basement membrane barrier to improve nanotherapeutic delivery to tumours. Nat. Nanotechnol. 2024, 19, 95–105.
Dong, W.; Li, Z. B.; Hou, T. L.; Shen, Y. Q.; Guo, Z. X.; Su, Y. T.; Chen, Z. Q.; Pan, H. M.; Jiang, W.; Wang, Y. C. Multicomponent synthesis of imidazole-based ionizable lipids for highly efficient and spleen-selective messenger RNA delivery. J. Am. Chem. Soc. 2024, 146, 15085–15095.
Jiang, W.; Dong, W.; Li, M.; Guo, Z. X.; Wang, Q.; Liu, Y.; Bi, Y. H.; Zhou, H.; Wang, Y. C. Nitric oxide induces immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2022, 16, 3881–3894.
Setyawati, M. I.; Wang, Q.; Ni, N. Y.; Tee, J. K.; Ariga, K.; Ke, P. C.; Ho, H. K.; Wang, Y. C.; Leong, D. T. Engineering tumoral vascular leakiness with gold nanoparticles. Nat. Commun. 2023, 14, 4269.
Duhachek-Muggy, S.; Qi, Y.; Wise, R.; Alyahya, L.; Li, H.; Hodge, J.; Zolkiewska, A. Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer. Mol. Cancer 2017, 16, 32.
Yu, T.; Nie, W.; Hong, Z. H.; He, Y. H.; Chen, J.; Mi, X.; Yang, S. P.; Li, X. L.; Wang, B. L.; Lin, Y. Z. et al. Synergy of immunostimulatory genetherapy with immune checkpoint blockade motivates immune response to eliminate cancer. Adv. Funct. Mater. 2021, 31, 2100715.
Yu, J.; Liu, S.; Wang, Y. P.; He, X. D.; Zhang, Q. F.; Qi, Y. X.; Zhou, D. F.; Xie, Z. G.; Li, X. Y.; Huang, Y. B. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact. Mater. 2022, 7, 389–400.