AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ultrafast electrochemical selenium doping strategy and the role of selenium in nickel-cobalt sulfide for enhanced overall water splitting

Guojing Wang1,2,§Yuzhuo Sun1,§Yidan Zhao1Chen Deng3Yuanzhi Zhu2 ( )Yunchao Li1 ( )
Key laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
PetroChina Shenzhen New Energy Research Institute Co., Ltd., Shenzhen 518052, China

§ Guojing Wang and Yuzhuo Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Se-doped NiCo2S4 nanoarrays were fabricated via an ultrafast and mild electrochemical doping route, exhibiting an outstanding overall water splitting performance due to the special influence of Se doping on their electronic structures and reconstruction behaviors.

Abstract

Heteroatom doping has emerged as an effective strategy to enhance the performance of electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Traditional doping methods often involve harsh chemical treatments and tedious procedures, hindering their widespread applications. Furthermore, although dynamic surface reconstruction in alkaline media is commonly observed in bimetallic compounds, strategies to regulate this reconstruction behavior for enhanced HER and OER performances remain inadequately explored. Herein, we report an ultrafast (≤ 300 s) and mild electrochemical doping approach to fabricate Se-doped NiCo2S4 hollow nanoarrays on carbon fiber papers (a-NiCo2(S1−xSex)4), investigating the role of Se in enhancing overall water splitting performance. Under HER conditions, a-NiCo2(S1−xSex)4 demonstrates remarkable stability, with Se tuning the electronic structure to optimize intermediate adsorption and facilitate H2O dissociation. While under OER conditions, Se doping lowers the energy barrier for reconstruction and promotes transformation into active Se, S co-doped Ni0.33Co0.67OOH nanosheets. The optimal samples exhibit superior HER and OER activity, requiring a cell voltage of 1.578 V to deliver a current density of 100 mA·cm−2 for overall water splitting. This work not only introduces a facile method for Se doping but also provides comprehensive insights into the structure–composition–activity relationship for Se-doped bimetallic sulfide.

Electronic Supplementary Material

Video
7165_Video S1.mp4
Download File(s)
7165_ESM.pdf (3.9 MB)

References

[1]

You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

[2]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

[3]

Chen, H. Y.; Yu, J. D.; Liu, L. J.; Gao, R. T.; Gao, Z. H.; Yang, Y.; Chen, Z. Q.; Zhan, S. B.; Liu, X. H.; Zhang, X. Y. et al. Modulating Pt-N/O bonds on co-doped WO3 for acid electrocatalytic hydrogen evolution with over 2000 h operation. Adv. Energy Mater. 2024, 14, 2303635.

[4]

Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

[5]

Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 2019, 29., 1808367.

[6]

Chen, H. Y.; Gao, R. T.; Chen, H. J.; Yang, Y.; Wu, L. M.; Wang, L. Ruthenium and silver synergetic regulation NiFe LDH boosting long-duration industrial seawater electrolysis. Adv. Funct. Mater. 2024, 34, 2315674.

[7]

Wang, L.; Gao, Z. H.; Su, K. R.; Nguyen, N. T.; Gao, R. T.; Chen, J. X.; Wang, L. Stacked high-entropy hydroxides promote charge transfer kinetics for photoelectrochemical water splitting. Adv. Funct. Mater. 2024, 34, 2403948.

[8]

Sun, L.; Luo, Q. M.; Dai, Z. F.; Ma, F. Material libraries for electrocatalytic overall water splitting. Coord. Chem. Rev. 2021, 444, 214049.

[9]

Kim, H. J.; Kim, H. Y.; Joo, J.; Joo, S. H.; Lim, J. S.; Lee, J.; Huang, H. W.; Shao, M. H.; Hu, J.; Kim, J. Y. et al. Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. J. Mater. Chem. A 2022, 10, 50–88.

[10]

Wang, J.; Zang, N.; Xuan, C. J.; Jia, B. H.; Jin, W.; Ma, T. Y. Self-supporting electrodes for gas-involved key energy reactions. Adv. Funct. Mater. 2021, 31, 2104620.

[11]

Li, M.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem 2022, 41, 2201019–2201024.

[12]

An, Z. Y.; Xue, H.; Sun, J.; Guo, N. K.; Song, T. S.; Sun, J. W.; Hao, Y. R.; Wang, Q. Co-construction of sulfur vacancies and heterogeneous interface into Ni3S2/MoS2 catalysts to achieve highly efficient overall water splitting. Chin. J. Struct. Chem 2022, 41, 2208037–2208043.

[13]

Liu, X.; Meng, J. S.; Zhu, J. X.; Huang, M.; Wen, B.; Guo, R. T.; Mai, L. Q. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344.

[14]

Li, Y. Y.; Du, X. C.; Huang, J. W.; Wu, C. Y.; Sun, Y. H.; Zou, G. F.; Yang, C. T.; Xiong, J. Recent progress on surface reconstruction of earth-abundant electrocatalysts for water oxidation. Small 2019, 15, 1901980.

[15]

Xiong, B. Y.; Chen, L. S.; Shi, J. L. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 2018, 8, 3688–3707.

[16]

Fu, G. T.; Lee, J. M. Ternary metal sulfides for electrocatalytic energy conversion. J. Mater. Chem. A 2019, 7, 9386–9405.

[17]

Kang, Z.; Guo, H. J.; Wu, J.; Sun, X.; Zhang, Z.; Liao, Q. L.; Zhang, S. C.; Si, H. N.; Wu, P. W.; Wang, L. et al. Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting. Adv. Funct. Mater. 2019, 29, 1807031.

[18]

Xue, Y. R.; Zuo, Z. C.; Li, Y. J.; Liu, H. B.; Li, Y. L. Graphdiyne-supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material. Small 2017, 13, 1700936.

[19]

Lee, H. S.; Pan, J.; Gund, G. S.; Park, H. S. Vertically aligned NiCo2S4 nanosheets deposited on N-doped graphene for bifunctional and durable electrode of overall water splitting. Adv. Mater. Interfaces 2020, 7, 2000138.

[20]

Li, F.; Xu, R. C.; Li, Y. M.; Liang, F.; Zhang, D. F.; Fu, W. F.; Lv, X. J. N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon 2019, 145, 521–528.

[21]

Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

[22]

Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.

[23]

Sun, Y. Q.; Zhang, T.; Li, C. C.; Xu, K.; Li, Y. Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. J. Mater. Chem. A 2020, 8, 13415–13436.

[24]

Wang, J.; Liao, T.; Wei, Z. Z.; Sun, J. T.; Guo, J. J.; Sun, Z. Q. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy. Small Methods 2021, 5, 2000988.

[25]

Dyjak, S.; Jankiewicz, B. J.; Kaniecki, S.; Kiciński, W. Selenium-doped carbon materials: Synthesis and applications for sustainable technologies. Green Chem. 2024, 26, 2985–3020.

[26]

Zhuo, J. Q.; Cabán-Acevedo, M.; Liang, H. F.; Samad, L.; Ding, Q.; Fu, Y. P.; Li, M. X.; Jin, S. High-performance electrocatalysis for hydrogen evolution reaction using se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catal. 2015, 5, 6355–6361.

[27]

Wang, K.; Zhou, C. J.; Xi, D.; Shi, Z. Q.; He, C.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Component-controllable synthesis of Co(S x Se1− x )2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy 2015, 18, 1–11.

[28]

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

[29]

Wang, Q. T.; Huang, Y. N.; Huang, L. Q.; Wu, Y. X.; Ren, S. F. Se doping regulates the activity of NiTe2 for electrocatalytic hydrogen evolution reaction. J. Phys. Chem. C 2020, 124, 26793–26800.

[30]

Zhang, B. L.; Qian, X. Y.; Xu, H.; Jiang, L.; Xia, J. W.; Chen, H. Q.; He, G. Y. Se-doping-induced sulfur vacancy engineering of CuCo2S4 nanosheets for enhanced electrocatalytic overall water splitting. Nanoscale 2023, 15, 16199–16208.

[31]

Li, B. S.; Li, J. P.; Liu, X. W.; Guo, J. X.; Sun, Y. F.; Zhang, X. Se-doped CoP nanoneedle arrays grown on carbon cloth for an efficient hydrogen evolution reaction. Energy Fuels 2022, 36, 13212–13217.

[32]

Du, X. Q.; Ding, Y. Y.; Zhang, X. S. Selectively Se-doped Co3O4@CeO2 nanoparticle-dotted nanoneedle arrays for high-efficiency overall water splitting. Appl. Surf. Sci. 2021, 562, 150227.

[33]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[34]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[35]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[36]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[37]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[38]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[39]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[40]

Naveau, A.; Monteil-Rivera, F.; Guillon, E.; Dumonceau, J. Interactions of aqueous selenium(−II) and (IV) with metallic sulfide surfaces. Environ. Sci. Technol. 2007, 41, 5376–5382.

[41]

Sun, Y. Y.; Zhang, X. Y.; Tang, J. F.; Li, X. X.; Fu, H. Q.; Xu, H. G.; Mao, F. X.; Liu, P. F.; Yang, H. G. Amorphous oxysulfide reconstructed from spinel NiCo2S4 for efficient water oxidation. Small 2023, 19, 2207965.

[42]

Liu, J.; Meng, X.; Xie, J. H.; Liu, B.; Tang, B.; Wang, R. Y.; Wang, C.; Gu, P.; Song, Y. D.; Huo, S. C. et al. Dual active sites engineering on sea urchin-Like CoNiS hollow nanosphere for stabilizing oxygen electrocatalysis via a template-free vulcanization strategy. Adv. Funct. Mater. 2023, 33, 2300579.

[43]

Yu, J. Q.; Cai, D. P.; Si, J. H.; Zhan, H. B.; Wang, Q. T. MOF-derived NiCo2S4 and carbon hybrid hollow spheres compactly concatenated by electrospun carbon nanofibers as self-standing electrodes for aqueous alkaline Zn batteries. J. Mater. Chem. A 2022, 10, 4100–4109.

[44]

Li, Y.; Gao, Y. A.; Yang, S.; Wu, C. Q.; Tan, Y. W. Anion-modulated nickel-based nanoheterostructures as high performance electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 12013–12027.

[45]

Wu, J.; Chen, T.; Zhu, C. Y.; Du, J. J.; Huang, L. S.; Yan, J.; Cai, D. M.; Guan, C.; Pan, C. X. Rational construction of a WS2/CoS2 heterostructure electrocatalyst for efficient hydrogen evolution at all pH values. ACS Sustain. Chem. Eng. 2020, 8, 4474–4480.

[46]

Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni–Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 2015, 5, 6680–6689.

[47]

Liu, C. C.; Jia, D. B.; Hao, Q. Y.; Zheng, X. R.; Li, Y.; Tang, C. C.; Liu, H.; Zhang, J.; Zheng, X. L. P-doped iron-nickel sulfide nanosheet arrays for highly efficient overall water splitting. ACS Appl. Mater. Interfaces 2019, 11, 27667–27676.

[48]

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

[49]

Yang, L.; Qin, H. Y.; Dong, Z. H.; Wang, T. Z.; Wang, G. C.; Jiao, L. F. Metallic S-CoTe with surface reconstruction activated by electrochemical oxidation for oxygen evolution catalysis. Small 2021, 17, 2102027.

[50]

Zhou, M.; Weng, Q. H.; Zhang, X. Y.; Wang, X.; Xue, Y. M.; Zeng, X. H.; Bando, Y.; Golberg, D. In situ electrochemical formation of core–shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 2017, 5, 4335–4342.

[51]

Zhao, W. P.; Peng, C. L.; Kuang, Z. Y.; Zhang, Q. M.; Xue, Y.; Li, Z. X.; Zhou, X. X.; Chen, H. R. Na+-induced in situ reconstitution of metal phosphate enabling efficient electrochemical water oxidation in neutral and alkaline media. Chem. Eng. J. 2020, 398, 125537.

[52]

Fan, K.; Zou, H. Y.; Lu, Y.; Chen, H.; Li, F. S.; Liu, J. X.; Sun, L. C.; Tong, L. P.; Toney, M. F.; Sui, M. L. et al. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369–12379.

[53]

Fan, S. S.; Liu, H. P.; Bi, S. F.; Gao, C.; Meng, X. H.; Wang, Y. N. Insight on the conversion reaction mechanism of NiCo2S4@CNTs as anode materials for lithium ion batteries and sodium ion batteries. Electrochim. Acta 2021, 388, 138618.

[54]

Wang, M.; Dong, C. L.; Huang, Y. C.; Shen, S. H. Operando spectral and electrochemical investigation into the heterophase stimulated active species transformation in transition-metal sulfides for efficient electrocatalytic oxygen evolution. ACS Catal. 2020, 10, 1855–1864.

[55]

Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822.

[56]

Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem., Int. Ed. 2006, 45, 2897–2901.

[57]

Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

Nano Research
Article number: 94907165
Cite this article:
Wang G, Sun Y, Zhao Y, et al. Ultrafast electrochemical selenium doping strategy and the role of selenium in nickel-cobalt sulfide for enhanced overall water splitting. Nano Research, 2025, 18(2): 94907165. https://doi.org/10.26599/NR.2025.94907165

145

Views

30

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 September 2024
Revised: 30 November 2024
Accepted: 02 December 2024
Published: 27 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return