PDF (12.7 MB)
Collect
Submit Manuscript
Research Article | Open Access

Insight into the metal-free electrocatalysis of heteroatom-doped carbon nanocages in competitive CO2 reduction and H2 evolution

Liu Jiao1Chenghui Mao1Biao Feng1Fengfei Xu1Shuo Li2Jun Zhong2Mingqi Xia1Ruonan Cui1Xizhang Wang1Lijun Yang1 ()Qiang Wu1 ()Zheng Hu1()
Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE) and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

View original image Download original image
The CO2 reduction performances of heteroatom (B, N, P, S) doped hierarchical carbon nanocages were examined and the impact of different types of doped species on competitive CO2 reduction and hydrogen evolution was unveiled by theoretical calculations (grey, pink, blue, red, yellow, purple and white represent C, B, N, O, S, P and H atoms, respectively).

Abstract

Metal-free carbon-based catalysts exhibit diverse electrocatalytic performances in CO2 reduction reaction (CO2RR), but the attributions and contributions of active sites are still confusing to date. Herein, the hierarchical carbon nanocages (hCNC) doped with different heteroatoms (B, N, P, S) are prepared to examine the impact of dopants on the competitive CO2RR and hydrogen evolution reaction (HER). The hCNC and P-doped hCNC show little CO2RR activity, B- and S-doped hCNC show weak CO2RR activity, while N-doped hCNC presents high CO2RR activity. The CO Faradaic efficiency (FECO) of N-containing hCNC increases almost linearly with increasing the N content, even with the co-existing B or P. S- and SN-doped hCNC more facilitate the HER. 16 doping configurations are constructed, and up to 53 sites are examined for the electrochemical activities with a constant potential modelling method. The pyridinic-N(N*) is the best active site for CO2RR to CO, while CBO2H2-1(αC*), CBO2H2-2(γC*), NO-1(βC*), PO2H-3(αC*) and SO3H-3(δC*) are active for HER. The optimized FECO achieves 83.6% for N-doped hCNC with 9.54 at.% nitrogen, and S-doped hCNC reaches ca. 30 mA·cm−2 current density for HER. This study unveils the structure-performance correlation of heteroatom-doped hCNC, which is conducive to the rational design of advanced metal-free carbon-based catalysts.

Electronic Supplementary Material

Download File(s)
7171_ESM.pdf (4.1 MB)

References

[1]

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

[2]

Hu, C. G.; Paul, R.; Dai, Q. B.; Dai, L. M. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 2021, 50, 11785–11843.

[3]

Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.

[4]

Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

[5]

Wang, B.; Liu, B. W.; Dai, L. M. Non-N-doped carbons as metal-free electrocatalysts. Adv. Sustain. Syst. 2021, 5, 2000134.

[6]

Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z. P.; Wang, S. Y.; Ruoff, R. S.; Qu, L. T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and co-doping. Adv. Mater. 2019, 31, 1805121.

[7]

Ding, J. Y.; Wei, T. R.; Hou, T.; Liu, W. J.; Liu, Q.; Zhang, H.; Luo, J.; Liu, X. J. Easily constructed porous silver films for efficient catalytic CO2 reduction and Zn–CO2 batteries. Nanoscale 2024, 16, 10628–10636.

[8]

Meng, Y. C.; Ding, J. Y.; Liu, Y. F.; Hu, G. Z.; Feng, Y. H.; Wu, Y. H.; Liu, X. J. Advancements in amorphous oxides for electrocatalytic carbon dioxide reduction. Mater. Today Catal. 2024, 7, 100065.

[9]

Wei, T. R.; Zhang, S. S.; Liu, Q.; Qiu, Y.; Luo, J.; Liu, X. J. Oxygen vacancy-rich amorphous copper oxide enables highly selective electroreduction of carbon dioxide to ethylene. Acta Phys. Chim. Sin. 2023, 39, 2207026.

[10]

Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 2013, 4, 2819.

[11]

Fernandes, D. M.; Peixoto, A. F.; Freire, C. Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO2 conversion and valorisation. Dalton Trans. 2019, 48, 13508–13528.

[12]

Sun, G. D.; Cao, Y. N.; Hu, M. Z.; Liang, X. H.; Wang, Z.; Cai, Z. J.; Shen, F. Y.; He, H.; Wang, Z. X.; Zhou, K. B. Pyrrolic N-doped carbon catalysts for highly efficient electrocatalytic reduction of CO2 with superior CO selectivity over a wide potential window. Carbon 2023, 214, 118320.

[13]

Zheng, W. Z.; Wang, D. S.; Zhang, Y. K.; Zheng, S. X.; Yang, B.; Li, Z. J.; Rodriguez, R. D.; Zhang, T.; Lei, L. C.; Yao, S. Y. et al. Promoting industrial-level CO2 electroreduction kinetics via accelerating proton feeding on a metal-free aerogel electrocatalyst. Nano Energy 2023, 105, 107980.

[14]

Yang, H. P.; Wu, Y.; Lin, Q.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Composition tailoring via N and S co-doping and structure tuning by constructing hierarchical pores: Metal-free catalysts for high-performance electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 15476–15480.

[15]

Xie, J. F.; Ghausi, M. A.; Wang, J.; Wang, X. Y.; Wang, W.; Yang, R.; Wu, M. X.; Zhang, Q. B.; Wang, Y. B. Low-energy CO2 reduction on a metal-free carbon material. ChemElectroChem 2020, 7, 2145–2150.

[16]

Cheng, C. F.; Shao, J. Q.; Wei, P. F.; Song, Y. P.; Li, H. F.; Gao, D. F.; Wang, G. X. Nitrogen and boron co-doped carbon spheres for carbon dioxide electroreduction. ChemNanoMat 2021, 7, 635–640.

[17]

Jia, C.; Ren, W. H.; Chen, X. J.; Yang, W. F.; Zhao, C. (N, B) dual heteroatom-doped hierarchical porous carbon framework for efficient electroreduction of carbon dioxide. ACS Sustain. Chem. Eng. 2020, 8, 6003–6010.

[18]

Li, R. R.; Liu, F.; Zhang, Y. H.; Guo, M. M.; Liu, D. Nitrogen, sulfur co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 44578–44587.

[19]

Wang, G. X.; Liu, M. Y.; Jia, J. C.; Xu, H. M.; Zhao, B. S.; Lai, K. Y.; Tu, C. Y.; Wen, Z. H. Nitrogen and sulfur co-doped carbon nanosheets for electrochemical reduction of CO2. ChemCatChem 2020, 12, 2203–2208.

[20]

Liu, S.; Yang, H. B.; Huang, X.; Liu, L. H.; Cai, W. Z.; Gao, J. J.; Li, X. N.; Zhang, T.; Huang, Y. Q.; Liu, B. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv. Funct. Mater. 2018, 28, 1800499.

[21]

Xu, J. Y.; Kan, Y. H.; Huang, R.; Zhang, B. S.; Wang, B. L.; Wu, K. H.; Lin, Y. M.; Sun, X. Y.; Li, Q. F.; Centi, G. et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem 2016, 9, 1085–1089.

[22]

Cui, X. Q.; Pan, Z. Y.; Zhang, L. J.; Peng, H. S.; Zheng, G. F. Selective etching of nitrogen-doped carbon by steam for enhanced electrochemical CO2 reduction. Adv. Energy Mater. 2017, 7, 1701456.

[23]

Li, J. J.; Zan, W. Y.; Kang, H. X.; Dong, Z. P.; Zhang, X. M.; Lin, Y. X.; Mu, Y. W.; Zhang, F. W.; Zhang, X. M.; Gu, J. Graphitic-N highly doped graphene-like carbon: A superior metal-free catalyst for efficient reduction of CO2. Appl. Catal. B: Environ. 2021, 298, 120510.

[24]

Fu, S. L.; Li, M.; De Jong, W.; Kortlever, R. Tuning the properties of N-doped biochar for selective CO2 electroreduction to CO. ACS Catal. 2023, 13, 10309–10323.

[25]

Lyu, Z. Y.; Xu, D.; Yang, L. J.; Che, R. C.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 2015, 12, 657–665.

[26]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

[27]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Mesostructured carbon-based nanocages: An advanced platform for energy chemistry. Sci. China Chem. 2020, 63, 665–681.

[28]

Zhang, H.; Li, X.; Zhang, D.; Zhang, L.; Kapilashrami, M.; Sun, T.; Glans, P. A.; Zhu, J. F.; Zhong, J.; Hu, Z. et al. Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages. Carbon 2016, 103, 480–487.

[29]

Li, G. C.; Mao, K.; Liu, M.; Yan, M. L.; Zhao, J.; Zeng, Y.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Achieving ultrahigh volumetric energy storage by compressing nitrogen and sulfur dual-doped carbon nanocages via capillarity. Adv. Mater. 2020, 32, 2004632.

[30]

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

[31]

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

[32]

Mao, K.; Yang, L. J.; Wang, X. Z.; Wu, Q.; Hu, Z. Identifying iron-nitrogen/carbon active structures for oxygen reduction reaction under the effect of electrode potential. J. Phys. Chem. Lett. 2020, 11, 2896–2901.

[33]

Chen, Y. Q.; Zhang, J. R.; Tian, J. Y.; Guo, Y.; Xu, F. F.; Zhang, Y.; Wang, X. Z.; Yang, L. J.; Wu, Q.; Hu, Z. Hierarchical Ni/N/C single-site catalyst achieving industrial-level current density and ultra-wide potential plateau of high CO Faradic efficiency for CO2 electroreduction. Adv. Funct. Mater. 2023, 33, 2214658.

[34]

Jiao, L.; Mao, C. H.; Xu, F. F.; Cheng, X. Y.; Cui, P. X.; Wang, X. Z.; Yang, L. J.; Wu, Q.; Hu, Z. Constructing gold single-atom catalysts on hierarchical nitrogen-doped carbon nanocages for carbon dioxide electroreduction to syngas. Small 2024, 20, 2305513.

[35]

Chen, X. N.; Wang, X. H.; Fang, D. A review on C 1s XPS-spectra for some kinds of carbon materials. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 1048–1058.

[36]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.

[37]

Yang, F. Q.; Yu, H. M.; Mao, X. Y.; Meng, Q. G.; Chen, S. X.; Deng, Q.; Zeng, Z. L.; Wang, J.; Deng, S. G. Boosting electrochemical CO2 reduction on ternary heteroatoms-doped porous carbon. Chem. Eng. J. 2021, 425, 131661.

[38]

Yan, D. F.; Dou, S.; Tao, L.; Liu, Z. J.; Liu, Z.; Huo, J.; Wang, S. Y. Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 13726–13730.

[39]

Sreekanth, N.; Nazrulla, M. A.; Vineesh, T. V.; Sailaja, K.; Phani, K. L. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem. Commun. 2015, 51, 16061–16064.

[40]

Hou, H. S.; Shao, L. D.; Zhang, Y.; Zou, G. Q.; Chen, J.; Ji, X. B. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries. Adv. Sci. 2017, 4, 1600243.

[41]

Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.

[42]

Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W. et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 2015, 27, 3541–3545.

[43]

Ma, Y.; Skytt, P.; Wassdahl, N.; Glans, P.; Guo, J.; Nordgren, J. Core excitons and vibronic coupling in diamond and graphite. Phys. Rev. Lett. 1993, 71, 3725–3728.

[44]

Ehlert, C.; Unger, W. E. S.; Saalfrank, P. C K-edge NEXAFS spectra of graphene with physical and chemical defects: A study based on density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14083–14095.

[45]

Kaznacheyev, K.; Osanna, A.; Jacobsen, C.; Plashkevych, O.; Vahtras, O.; Ågren; Carravetta, V.; Hitchcock, A. P. Innershell absorption spectroscopy of amino acids. J. Phys. Chem. A 2002, 106, 3153–3168.

[46]

Heymann, K.; Lehmann, J.; Solomon, D.; Schmidt, M. W. I.; Regier, T. C 1s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon. Org. Geochem. 2011, 42, 1055–1064.

[47]

Zhou, J. G.; Wang, J.; Liu, H.; Banis, M. N.; Sun, X. L.; Sham, T. K. Imaging nitrogen in individual carbon nanotubes. J. Phys. Chem. Lett. 2010, 1, 1709–1713.

[48]

Gao, Y. J.; Hu, G.; Zhong, J.; Shi, Z. J.; Zhu, Y. S.; Su, D. S.; Wang, J. G.; Bao, X. H.; Ma, D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 2109–2113.

[49]

Pan, B. B.; Zhu, X. R.; Wu, Y. L.; Liu, T. C.; Bi, X. X.; Feng, K.; Han, N.; Zhong, J.; Lu, J.; Li, Y. F. et al. Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon. Adv. Sci. 2020, 7, 2001002.

[50]

Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 2016, 1, 16130.

[51]

Xiong, W. H.; Peng, J.; Hu, Y. F. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite. J. Colloid Interface Sci. 2012, 368, 528–532.

[52]

Zhu, X. J.; Zhang, T. M.; Jiang, D. C.; Duan, H. L.; Sun, Z. J.; Zhang, M. M.; Jin, H. C.; Guan, R. N.; Liu, Y. J.; Chen, M. Q. et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 2018, 9, 4177.

[53]

Xue, X. Y.; Yang, H.; Yang, T.; Yuan, P. F.; Li, Q.; Mu, S. C.; Zheng, X. L.; Chi, L. F.; Zhu, J.; Li, Y. G. et al. N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J. Mater. Chem. A 2019, 7, 15271–15277.

[54]

Kasrai, M.; Brown, J. R.; Bancroft, G. M.; Yin, Z.; Tan, K. H. Sulphur characterization in coal from X-ray absorption near edge spectroscopy. Int. J. Coal Geol. 1996, 32, 107–135.

[55]

Wang, X. P.; Li, X. Y.; Ding, S. S.; Chen, Y. L.; Liu, Y.; Fang, M. W.; Xiao, G. Z.; Zhu, Y. Constructing ample active sites in nitrogen-doped carbon materials for efficient electrocatalytic carbon dioxide reduction. Nano Energy 2021, 90, 106541.

[56]

Ye, L.; Ying, Y. R.; Sun, D. R.; Zhang, Z. Y.; Fei, L. F.; Wen, Z. H.; Qiao, J. L.; Huang, H. T. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 3244–3251.

[57]
Scudder, P. H. Electron Flow in Organic Chemistry: A Decision-Based Guide to Organic Mechanisms; 2nd ed. John Wiley & Sons: Hoboken, 2013; p 33.
Nano Research
Article number: 94907171
Cite this article:
Jiao L, Mao C, Feng B, et al. Insight into the metal-free electrocatalysis of heteroatom-doped carbon nanocages in competitive CO2 reduction and H2 evolution. Nano Research, 2025, 18(2): 94907171. https://doi.org/10.26599/NR.2025.94907171
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return