PDF (12 MB)
Collect
Submit Manuscript
Research Article | Open Access

Carbon dots-engineered gold nanoclusters in silica enabled aqueous-phase fluorescence-phosphorescence dual-emission towards advanced luminescent anti-counterfeiting

Xiaojian Yan1,§Lin Wang1,§Wencheng Zhong1Ximeng Wang1Wenxing Gao1Li Shang1,2()
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China

§ Xiaojian Yan and Lin Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
We report the design of new fluorescence-phosphorescence dual-emission materials based on carbon dots-engineered gold nanoclusters in silica for advanced luminescent anti-counterfeiting. Highly reversible and dynamic color switching between magenta fluorescence and green phosphorescence is easily achieved by simply switching on/off the ultraviolet (UV) irradiation.

Abstract

Development of new anti-counterfeiting technology with dynamic optical signals has drawn great attention, but the use of multiple external stimulus or long-time light irradiation inevitably increases the operation complexity and limits the practical application. In this work, we report the design of new fluorescence-phosphorescence dual-emission materials based on carbon dots (CDs)-engineered gold nanoclusters (AuNCs) in silica for advanced luminescent anti-counterfeiting. In particular, co-encapsulation of phosphorescent CDs and fluorescent AuNCs by rigid silica matrix enables the construction of a dual-emission system (AuNCs/CDs@SiO2) in aqueous phase. The AuNCs/CDs@SiO2 composite displayed significant fluorescence color change based on inner filter effect, as confirmed by in-depth spectral and photophysical characterization. Highly reversible and dynamic color switching between magenta fluorescence and green phosphorescence was easily achieved by simply switching on/off the ultraviolet (UV) irradiation. Potential utility of dual-emitting AuNCs/CDs@SiO2 as novel dynamic anti-counterfeiting materials has been successfully demonstrated, including anti-counterfeiting ink, ink-free optical printing film, and information encryption. The present aqueous-phase fluorescence-phosphorescence dual-emission system exhibits two types of anti-counterfeiting mode without introducing external stimulus, increasing the difficulty of imitation and duplication. This work provides a straightforward and generable strategy to design advanced optical anti-counterfeiting materials by combining phosphorescent materials with other fluorophores via reasonable engineering strategy.

Electronic Supplementary Material

Download File(s)
7172_ESM.pdf (1.5 MB)

References

[1]

Yu, X. W.; Zhang, H. Y.; Yu, J. H. Luminescence anti-counterfeiting: From elementary to advanced. Aggregate 2021, 2, 20–34.

[2]

Ren, W.; Lin, G. G.; Clarke, C.; Zhou, J. J.; Jin, D. Y. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater. 2020, 32, 1901430.

[3]

Kumar, P.; Singh, S.; Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 2016, 8, 14297–14340.

[4]

Otaegui, J. R.; Ruiz-Molina, D.; Hernando, J.; Roscini, C. Multidimensional data encoding based on multicolor microencapsulated thermoresponsive fluorescent phase change materials. Adv. Funct. Mater. 2024, 34, 2402510.

[5]

Lian, X.; Chang, R.; Huang, G.; Peng, Y. Q.; Wang, K. X.; Zhang, J. Z.; Yao, B. B.; Niu, H. L. Multicolor fluorescent inks based on lanthanide hybrid organogels for anticounterfeiting and logic circuit design. ACS Appl. Mater. Interfaces 2024, 16, 6133–6142.

[6]

Zuo, Z. H.; Feng, Z. W.; Peng, Y. Y.; Su, Y. C.; Liu, Z. Q.; Li, G. G.; Yin, Y. D.; Chen, Y. B. Designing yolk–shell nanostructures for reversible water-vapor-responsive dual-mode switching of fluorescence and structural color. ACS Nano 2024, 18, 4456–4466.

[7]

Zhao, K. T.; Liu, F.; Sun, H. C.; Xia, P. F.; Qu, J. F.; Lu, C. G.; Zong, S. F.; Zhang, R.; Xu, S. H.; Wang, C. L. A novel ion species- and ion concentration-dependent anti-counterfeiting based on ratiometric fluorescence sensing of CDs@MOF-nanofibrous films. Small 2024, 20, 2305211.

[8]

Tu, L. J.; Chen, Y.; Song, X. J.; Jiang, W. Q.; Xie, Y. J.; Li, Z. Förster resonance energy transfer: Stimulus-responsive purely organic room temperature phosphorescence through dynamic B−N bond. Angew. Chem., Int. Ed. 2024, 63, e202402865.

[9]

Zuo, M. Z.; Li, T. H.; Feng, H. H.; Wang, K. Y.; Zhao, Y.; Wang, L. Y.; Hu, X. Y. Chaperone mimetic strategy for achieving organic room-temperature phosphorescence based on confined supramolecular assembly. Small 2024, 20, 202306746.

[10]

Wei, J. H.; Ou, W. T.; Luo, J. B.; Kuang, D. B. Zero-dimensional Zn-based halides with ultra-long room-temperature phosphorescence for time-resolved anti-counterfeiting. Angew. Chem., Int. Ed. 2022, 61, e202207985.

[11]

Yang, X. R.; Sheng, Y. H.; Zhang, L. L.; Yang, L.; Xing, F. J.; Di, Y. S.; Liu, C. H.; Hu, F. R.; Yang, X. F.; Yang, G. F. et al. Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites. Nano Res. 2024, 17, 9971–9979.

[12]

Feng, X. Y.; Sheng, Y. H.; Ma, K. W.; Xing, F. J.; Liu, C. H.; Yang, X. F.; Qian, H. Q.; Zhang, S. D.; Di, Y. S.; Liu, Y. S. et al. Multi-level anti-counterfeiting and optical information storage based on luminescence of Mn-doped perovskite quantum dots. Adv. Opt. Mater. 2022, 10, 2200706.

[13]

Wang, J.; Yao, X. Y.; Liu, Y.; Zhou, H. T.; Chen, W.; Sun, G. C.; Su, J. H.; Ma, X.; Tian, H. Tunable photoluminescence including white-light emission based on noncovalent interaction-locked N, N’-disubstituted dihydrodibenzo[ a, c]phenazines. Adv. Opt. Mater. 2018, 6, 1800074.

[14]

Wang, C.; O’Hagan, M. P.; Li, Z. Y.; Zhang, J. J.; Ma, X.; Tian, H.; Willner, I. Photoresponsive DNA materials and their applications. Chem. Soc. Rev. 2022, 51, 720–760.

[15]

Zhong, W. C.; Shang, L. Photoswitching the fluorescence of nanoparticles for advanced optical applications. Chem. Sci. 2024, 15, 6218–6228.

[16]

Haider, A. A.; Zhao, H. P.; Zi, Y. Z.; Xu, Z.; Bai, X.; Cun, Y. K.; Liu, Y.; Babeker, H.; Saeed, A.; Song, Z. G. et al. Advances in reversible luminescence modification and applications of inorganic phosphors based on chromism reaction. Adv. Opt. Mater. 2024, 12, 2302265.

[17]

Sun, Y.; Le, X. X.; Zhou, S. Y.; Chen, T. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv. Mater. 2022, 34, 2201262.

[18]

Jung, H. Y.; Kim, B.; Jeon, M. H.; Kim, Y. Reversible near-infrared fluorescence photoswitching in aqueous media by diarylethene: Toward high-accuracy live optical imaging. Small 2022, 18, 2103523.

[19]

Yan, X. J.; Zhong, W. C.; Qu, S. H.; Li, Z. Q.; Shang, L. Photochromic tungsten oxide quantum dots-based fluorescent photoswitches towards dual-mode anti-counterfeiting application. J. Colloid Interface Sci. 2023, 646, 855–862.

[20]

Jia, H.; Chen, Z. H.; Chen, Y. P.; Wang, X. L.; Wei, J. A real-time display screen based on organohydrogel with tunable fluorescence. Adv. Opt. Mater. 2024, 12, 2400673.

[21]

Wang, L.; Zhong, W. C.; Gao, W. X.; Liu, W. F.; Shang, L. Dynamic multicolor luminescent anti-counterfeiting based on spiropyran-engineered gold nanoclusters. Chem. Eng. J. 2024, 479, 147490.

[22]

Chen, X.; Wu, Y. F. S.; Tian, B.; Zheng, K.; Zhan, H. Y.; Wu, W. One-step fabrication of new PCPNs with unique optical responses for ultra-stable anti-counterfeiting labels. Adv. Funct. Mater. 2024, 34, 2316487.

[23]

Yan, X.; Peng, H.; Xiang, Y.; Wang, J.; Yu, L.; Tao, Y.; Li, H. H.; Huang, W.; Chen, R. F. Recent advances on host-guest material systems toward organic room temperature phosphorescence. Small 2022, 18, 2104073.

[24]

Ma, L. W.; Ma, X. Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions. Sci. China Chem. 2023, 66, 304–314.

[25]

Lei, Y. X.; Dai, W. B.; Guan, J. X.; Guo, S.; Ren, F.; Zhou, Y. D.; Shi, J. B.; Tong, B.; Cai, Z. X.; Zheng, J. R. et al. Wide-range color-tunable organic phosphorescence materials for printable and writable security inks. Angew. Chem., Int. Ed. 2020, 59, 16054–16060.

[26]

Cai, S. Z.; Shi, H. F.; Tian, D.; Ma, H. L.; Cheng, Z. C.; Wu, Q.; Gu, M. X.; Huang, L.; An, Z. F.; Peng, Q. et al. Enhancing ultralong organic phosphorescence by effective π-type halogen bonding. Adv. Funct. Mater. 2018, 28, 1705045.

[27]

Sun, S. Y.; Ma, L. W.; Wang, J.; Ma, X.; Tian, H. Red-light excited efficient metal-free near-infrared room-temperature phosphorescent films. Natl. Sci. Rev. 2022, 9, nwab085.

[28]

Simões, R.; Rodrigues, J.; Neto, V.; Monteiro, T.; Gonçalves, G. Carbon dots: A bright future as anticounterfeiting encoding agents. Small 2024, 20, 2311526.

[29]

Li, T. T.; Zhang, N.; Zhao, S.; Liu, M. Z.; Zhang, K.; Zhang, C.; Shu, J.; Yi, T. F. Long-lived dynamic room temperature phosphorescent carbon dots for advanced sensing and bioimaging applications. Coord. Chem. Rev. 2024, 516, 215987.

[30]

Wan, J. F.; Zhang, X. Y.; Fu, K.; Zhang, X.; Shang, L.; Su, Z. Q. Highly fluorescent carbon dots as novel theranostic agents for biomedical applications. Nanoscale 2021, 13, 17236–17253.

[31]

Shi, L. L.; Ding, L. Y.; Zhang, Y. Q.; Lu, S. Y. Application of room-temperature phosphorescent carbon dots in information encryption and anti-counterfeiting. Nano Today 2024, 55, 102200.

[32]

Tan, J.; Li, Q. J.; Meng, S.; Li, Y. C.; Yang, J.; Ye, Y. X.; Tang, Z. K.; Qu, S. N.; Ren, X. D. Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv. Mater. 2021, 33, 2006781.

[33]

Ye, S.; Ji, S. J.; Kang, M. H.; Liu, L. W.; Qu, J. L.; Song, J.; Guo, J. Q. Aggregated carbon dots endow them with room-temperature phosphorescence in aqueous environments: Mechanisms, properties, and applications. Chem. Eng. J. 2024, 495, 153653.

[34]

Li, J. Y.; Wang, B. L.; Zhang, H. Y.; Yu, J. H. Carbon dots-in-matrix boosting intriguing luminescence properties and applications. Small 2019, 15, 1805504.

[35]

Cui, M. Y.; Li, M. J.; Wang, J. H.; Chen, R. Z.; Xu, Z. J.; Wang, J. Y.; Han, J. F.; Hu, G. Y.; Sun, R.; Jiang, X. et al. Hydrothermal synthesis of zinc-doped silica nanospheres simultaneously featuring stable fluorescence and long-lived room-temperature phosphorescence. Angew. Chem., Int. Ed. 2021, 60, 15490–15496.

[36]

Yan, Z. H.; Feng, Z. Y.; Zhou, S.; Yang, X. M. Long-wavelength emission room-temperature phosphorescent carbon dots activated by an ortho-carboxyl substitution strategy and employed for achieving tunable LED. Chem. Eng. J. 2024, 494, 152835.

[37]

Shi, S. H.; Liu, W. F.; Di, Y. J.; Xu, Y. K.; Wu, T.; Huang, X. B.; Wang, M. L.; Liu, X. G. High pH stability and ultralong-lived room temperature phosphorescence carbon dots in aqueous environment. Adv. Opt. Mater. 2024, 12, 2302892.

[38]

Chen, J. Y.; Tan, J. Q.; Liang, P.; Wu, C. J.; Hou, Z. L.; Shen, K. Y.; Lei, B. F.; Hu, C. F.; Zhang, X. J.; Zhuang, J. L. et al. Dynamic room temperature phosphorescence of silane-functionalized carbon dots confining within silica for anti-counterfeiting applications. Small 2024, 20, 2306323.

[39]

Li, Q. J.; Zhou, M.; Yang, M. Y.; Yang, Q. F.; Zhang, Z. X.; Shi, J. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 2018, 9, 734.

[40]

Lin, H. B.; Song, X. R.; Chai, O. J. H.; Yao, Q. F.; Yang, H. H.; Xie, J. P. Photoluminescent characterization of metal nanoclusters: Basic parameters, methods, and applications. Adv. Mater. 2024, 36, 2401002.

[41]

Yang, G.; Wang, Z. P.; Du, F. L.; Jiang, F. Y.; Yuan, X.; Ying, J. Y. Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications. J. Am. Chem. Soc. 2023, 145, 11879–11898.

[42]

Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.

[43]

Gao, W. X.; Liu, W. F.; Huang, S. J.; Wang, L.; Jian, Y. Y.; Li, Y. T.; Wu, W. W.; Shang, L. Portable hydrogel-based tri-channel fluorescence sensor array for visual detection of multiple explosives. Nano Res. 2024, 17, 6483–6492.

[44]

Zhong, W. C.; Yan, X. J.; Qu, S. H.; Shang, L. Site-specific fabrication of gold nanocluster-based fluorescence photoswitch enabled by the dual roles of albumin proteins. Aggregate 2023, 4, e245.

[45]

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

[46]

Teng, X. M.; Sun, X. B.; Pan, W.; Song, Z. W.; Wang, J. P. Carbon dots confined in silica nanoparticles for triplet-to-singlet Föster resonance energy-transfer-induced delayed fluorescence. ACS Appl. Nano Mater. 2022, 5, 5168–5175.

[47]

Jiang, K.; Wang, Y. H.; Gao, X. L.; Cai, C. Z.; Lin, H. W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem., Int. Ed. 2018, 57, 6216–6220.

[48]

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

[49]

Gan, Z. X.; Xu, H.; Hao, Y. L. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: Consensus, debates and challenges. Nanoscale 2016, 8, 7794–7807.

[50]

Liang, Y. C.; Cao, Q.; Liu, K. K.; Peng, X. Y.; Sui, L. Z.; Wang, S. P.; Song, S. Y.; Wu, X. Y.; Zhao, W. B.; Deng, Y. et al. Phosphorescent carbon-nanodots-assisted Förster resonant energy transfer for achieving red afterglow in an aqueous solution. ACS Nano 2021, 15, 16242–16254.

[51]

Sun, X. Y.; He, W.; Liu, B. Water-soluble long afterglow carbon dots/silica composites for dual-channel detection of alkaline phosphatase and multi-level information anti-counterfeiting. Anal. Methods 2022, 14, 5001–5011.

[52]

Le Guével, X.; Höetzer, B.; Jung, G.; Schneider, M. NIR-emitting fluorescent gold nanoclusters doped in silica nanoparticles. J. Mater. Chem. 2011, 21, 2974–2981.

[53]

Zhong, W. C.; Liang, K. Q.; Liu, W. F.; Shang, L. Ligand-protected nanocluster-mediated photoswitchable fluorescent nanoprobes towards dual-color cellular imaging. Chem. Sci. 2023, 14, 8823–8830.

[54]

Li, Y. X.; Qu, S. H.; Xue, Y. M.; Zhang, L. B.; Shang, L. Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano-bio interactions. Nano Res. 2023, 16, 999–1008.

[55]

Li, Q.; Zhou, X. M.; Tan, L. L.; Shang, L. MOF-based surface tailoring the near-infrared luminescence property of gold nanoclusters for ratiometric fluorescence sensing of acetylcholinesterase. Sens. Actuators B: Chem. 2023, 385, 133695.

[56]

Lv, W. H.; Cao, Q.; Song, S. Y.; Liang, Y. C.; Zhou, R.; Liu, K. K.; Shan, C. X. Enhanced phosphorescence of carbon nanodots via double confinement for 3D artworks with long emission lifetimes. Small 2023, 19, 2302504.

[57]

Zhu, Y.; Feng, Z. Y.; Yan, Z. H.; Yang, X. M. Promoting the transfer of phosphorescence from the solid state to aqueous phase and establishing the universal real-time detection based on the smartphone imaging. Sens. Actuators B: Chem. 2022, 371, 132529.

[58]

Shang, L.; Dong, S. J. Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Anal. Chem. 2009, 81, 1465–1470.

[59]

Li, T. T.; Zhao, Y. H.; Zhang, N.; Zhang, K.; Zhang, C.; Yi, T. F. Endowing carbon dots with long-lived phosphorescence emission in aqueous solutions. Adv. Funct. Mater. 2024, 34, 2309663.

[60]

Liang, Y. C.; Gou, S. S.; Liu, K. K.; Wu, W. J.; Guo, C. Z.; Lu, S. Y.; Zang, J. H.; Wu, X. Y.; Lou, Q.; Dong, L. et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today 2020, 34, 100900.

[61]

Zhang, H. Q.; Wang, G.; Zhang, Z. M.; Lei, J. H.; Liu, T. M.; Xing, G. C.; Deng, C. X.; Tang, Z. K.; Qu, S. N. One step synthesis of efficient red emissive carbon dots and their bovine serum albumin composites with enhanced multi-photon fluorescence for in vivo bioimaging. Light Sci. Appl. 2022, 11, 113.

[62]

Maity, A.; Pal, U.; Chakraborty, B.; Sengupta, C.; Sau, A.; Chakraborty, S.; Basu, S. Preferential photochemical interaction of Ru(III) doped carbon nano dots with bovine serum albumin over human serum albumin. Int. J. Biol. Macromol. 2019, 137, 483–494.

[63]

Liu, Y. P.; Lei, J. H.; Wang, G.; Zhang, Z. M.; Wu, J.; Zhang, B. H.; Zhang, H. Q.; Liu, E. S.; Wang, L. M.; Liu, T. M. et al. Toward strong near-infrared absorption/emission from carbon dots in aqueous media through solvothermal fusion of large conjugated perylene derivatives with post-surface engineering. Adv. Sci. 2022, 9, 2202283.

[64]

Wang, Y. Y.; Hu, H.; Dong, T. Y.; Mansour, H.; Zhang, X. F.; Li, F.; Wu, P. Double-stranded DNA matrix for photosensitization switching. CCS Chem. 2021, 3, 2394–2404.

[65]

Amdursky, N.; Kundu, P. K.; Ahrens, J.; Huppert, D.; Klajn, R. Noncovalent interactions with proteins modify the physicochemical properties of a molecular switch. ChemPlusChem 2016, 81, 44–48.

Nano Research
Article number: 94907172
Cite this article:
Yan X, Wang L, Zhong W, et al. Carbon dots-engineered gold nanoclusters in silica enabled aqueous-phase fluorescence-phosphorescence dual-emission towards advanced luminescent anti-counterfeiting. Nano Research, 2025, 18(2): 94907172. https://doi.org/10.26599/NR.2025.94907172
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return