Heterogenous and gradient structures are common in biological materials and essential for achieving exceptional mechanical properties from cost-effective components. Integrating glass flakes into this design concept holds great potential for enhancing the performance of bioinspired transparent materials, particularly through a synthesis approach that allows for precise control over their structural properties. In this study, we demonstrate that glass flakes modified with silane agents can spontaneously form a surface layer at the air–liquid interface. This interfacial assembly enables the layer-by-layer embedding of highly aligned glass flakes within the polymer matrix. By varying the aspect ratios of the glass flakes during film construction, we can create a controllable gradient, nacre-like architecture that offers an enhanced balance of strength and toughness, while maintaining transparency and haze comparable to the homogeneous structures. Lamination of both homogeneous and heterogeneous composite films further enables the evaluation of bending properties. The heterogeneous structure results in a superior combination of flexural strength, bending energy, fracture toughness, and work of fracture. Finite element simulations highlight the critical role of gradient structures and repeated sequences in redistributing stress and mitigating crack propagation. The interfacial assembly of glass flakes offers a versatile platform for optimizing the performance of bioinspired transparent materials by enabling precise and flexible manipulation of microstructures.
Liu, Z. Q.; Meyers, M. A.; Zhang, Z. F.; Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci. 2017, 88, 467–498.
Quan, H. C.; Yang, W.; Lapeyriere, M.; Schaible, E.; Ritchie, R. O.; Meyers, M. A. Structure and mechanical adaptability of a modern elasmoid fish scale from the common carp. Matter 2020, 3, 842–863.
Naleway, S. E.; Porter, M. M.; McKittrick, J.; Meyers, M. A. Structural design elements in biological materials: Application to bioinspiration. Adv. Mater. 2015, 27, 5455–5476.
Barthelat, F.; Yin, Z.; Buehler, M. J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 2016, 1, 16007.
Nepal, D.; Kang, S.; Adstedt, K. M.; Kanhaiya, K.; Bockstaller, M. R.; Brinson, L. C.; Buehler, M. J.; Coveney, P. V.; Dayal, K.; El-Awady, J. A. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 2023, 22, 18–35.
Zhang, Z. B.; Gao, H. L.; Wen, S. M.; Pang, J.; Zhang, S. C.; Cui, C.; Wang, Z. Y.; Yu, S. H. Scalable manufacturing of mechanical robust bioinspired ceramic-resin composites with locally tunable heterogeneous structures. Adv. Mater. 2023, 35, 2209510.
Cao, R. Q.; Yu, Q.; Pan, J.; Lin, Y.; Sweet, A.; Li, Y.; Ritchie, R. O. On the exceptional damage-tolerance of gradient metallic materials. Mater. Today 2020, 32, 94–107.
Shang, Z. X.; Sun, T. Y.; Ding, J.; Richter, N. A.; Heckman, N. M.; White, B. C.; Boyce, B. L.; Hattar, K.; Wang, H. Y.; Zhang, X. H. Gradient nanostructured steel with superior tensile plasticity. Sci. Adv. 2023, 9, eadd9780.
Cao, J.; Zhou, Z. H.; Song, Q. C.; Chen, K. Y.; Su, G. H.; Zhou, T.; Zheng, Z.; Lu, C. H.; Zhang, X. X. Ultrarobust Ti3C2T x MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 2020, 14, 7055–7065.
Libanori, R.; Erb, R. M.; Reiser, A.; Le Ferrand, H.; Süess, M. J.; Spolenak, R.; Studart, A. R. Stretchable heterogeneous composites with extreme mechanical gradients. Nat. Commun. 2012, 3, 1265.
Liu, Z. Y.; Qi, D. P.; Guo, P. Z.; Liu, Y.; Zhu, B. W.; Yang, H.; Liu, Y. Q.; Li, B.; Zhang, C. G.; Yu, J. C. et al. Thickness-gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 2015, 27, 6230–6237.
Pragya, A.; Ghosh, T. K. Soft functionally gradient materials and structures-natural and manmade: A review. Adv. Mater. 2023, 35, 2300912.
Giachini, P. A. G. S.; Gupta, S. S.; Wang, W.; Wood, D.; Yunusa, M.; Baharlou, E.; Sitti, M.; Menges, A. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Sci. Adv. 2020, 6, eaay0929.
Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.
Finnemore, A.; Cunha, P.; Shean, T.; Vignolini, S.; Guldin, S.; Oyen, M.; Steiner, U. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 2012, 3, 996.
Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.
Cheng, Q. F.; Jiang, L.; Tang, Z. Y. Bioinspired layered materials with superior mechanical performance. Acc. Chem. Res. 2014, 47, 1256–1266.
Tang, Z. Y.; Kotov, N. A.; Magonov, S.; Ozturk, B. Nanostructured artificial nacre. Nat. Mater. 2003, 2, 413–418.
Zhao, H. W.; Yang, Z.; Guo, L. Nacre-inspired composites with different macroscopic dimensions: Strategies for improved mechanical performance and applications. NPG Asia Mater. 2018, 10, 1–22.
Espinosa, H. D.; Juster, A. L.; Latourte, F. J.; Loh, O. Y.; Gregoire, D.; Zavattieri, P. D. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat. Commun. 2011, 2, 173.
Xu, Z. H.; Li, X. D. Deformation strengthening of biopolymer in nacre. Adv. Funct. Mater. 2011, 21, 3883–3888.
Song, F.; Soh, A. K.; Bai, Y. L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003, 24, 3623–3631.
Gim, J.; Schnitzer, N.; Otter, L. M.; Cui, Y. C.; Motreuil, S.; Marin, F.; Wolf, S. E.; Jacob, D. E.; Misra, A.; Hovden, R. Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell. Nat. Commun. 2019, 10, 4822.
Zhao, C. Q.; Zhang, P. C.; Zhou, J. J.; Qi, S. H.; Yamauchi, Y.; Shi, R. R.; Fang, R. C.; Ishida, Y.; Wang, S. T.; Tomsia, A. P. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 2020, 580, 210–215.
Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.
Chen, K.; Tang, X. K.; Jia, B. B.; Chao, C. Z.; Wei, Y.; Hou, J. Y.; Dong, L. T.; Deng, X. L.; Xiao, T. H.; Goda, K. et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat. Mater. 2022, 21, 1121–1129.
Cui, W.; Li, M. Z.; Liu, J. Y.; Wang, B.; Zhang, C.; Jiang, L.; Cheng, Q. F. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano 2014, 8, 9511–9517.
Li, Y. Q.; Yu, T.; Yang, T. Y.; Zheng, L. X.; Liao, K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 2012, 24, 3426–3431.
Wang, H. G.; Lu, R. J.; Li, L.; Liang, C.; Yan, J.; Liang, R.; Sun, G. X.; Jiang, L.; Cheng, Q. F. Strong, tough, and thermally conductive nacre-inspired boron nitride nanosheet/epoxy layered nanocomposites. Nano Res. 2024, 17, 820–828.
Yoo, S. C.; Park, Y. K.; Park, C.; Ryu, H.; Hong, S. H. Biomimetic artificial nacre: Boron nitride nanosheets/gelatin nanocomposites for biomedical applications. Adv. Funct. Mater. 2018, 28, 1805948.
Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.
Yan, J.; Zhou, T. Z.; Yang, X. Y.; Zhang, Z. J.; Li, L.; Zou, Z. Y.; Fu, Z. Y.; Cheng, Q. F. Strong and tough MXene bridging-induced conductive nacre. Angew. Chem., Int. Ed. 2024, 63, e202405228.
Wang, J. E.; Song, T. L.; Ming, W.; Yele, M.; Chen, L. F.; Zhang, H.; Zhang, X. J.; Liang, B. L.; Wang, G. S. High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent joule heating performance. Nano Res. 2024, 17, 2061–2069.
Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520.
Magrini, T.; Bouville, F.; Lauria, A.; Le Ferrand, H.; Niebel, T. P.; Studart, A. R. Transparent and tough bulk composites inspired by nacre. Nat. Commun. 2019, 10, 2794.
Eckert, A.; Rudolph, T.; Guo, J. Q.; Mang, T.; Walther, A. Exceptionally ductile and tough biomimetic artificial nacre with gas barrier function. Adv. Mater. 2018, 30, 1802477.
Liu, Z. Q.; Zhu, Y. K.; Jiao, D.; Weng, Z. Y.; Zhang, Z. F.; Ritchie, R. O. Enhanced protective role in materials with gradient structural orientations: Lessons from nature. Acta Biomater. 2016, 44, 31–40.
Huang, W.; Restrepo, D.; Jung, J. Y.; Su, F. Y.; Liu, Z. Q.; Ritchie, R. O.; McKittrick, J.; Zavattieri, P.; Kisailus, D. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 2019, 31, 1901561.
Madhav, D.; Buffel, B.; Moldenaers, P.; Desplentere, F.; Vandeginste, V. A review of nacre-inspired materials: Chemistry, strengthening-deformation mechanism, synthesis, and applications. Prog. Mater. Sci. 2023, 139, 101168.
Li, X. D.; Chang, W. C.; Chao, Y. J.; Wang, R. Z.; Chang, M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 2004, 4, 613–617.
Yang, H. M.; Jo, S.; Oh, J. H.; Choi, B. H.; Woo, J. Y.; Han, C. S. Strong and tough nacre-inspired graphene oxide composite with hierarchically similar structure. ACS Nano 2022, 16, 10509–10516.
Woigk, W.; Poloni, E.; Grossman, M.; Bouville, F.; Masania, K.; Studart, A. R. Nacre-like composites with superior specific damping performance. Proc. Natl. Acad. Sci. USA 2022, 119, e2118868119.
Wu, Z. Y.; Pan, H.; Huang, P.; Tang, J. H.; She, W. Biomimetic mechanical robust cement-resin composites with machine learning-assisted gradient hierarchical structures. Adv. Mater. 2024, 36, 2405183.
Meng, Y. F.; Yu, C. X.; Zhou, L. C.; Shang, L. M.; Yang, B.; Wang, Q. Y.; Meng, X. S.; Mao, L. B.; Yu, S. H. Nanograded artificial nacre with efficient energy dissipation. Innovation 2023, 4, 100505.
Abid, N.; Mirkhalaf, M.; Barthelat, F. Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance. J. Mech. Phys. Solids 2018, 112, 385–402.
Jiang, M. Y.; Meng, X. Y.; Zhou, J.; Wei, Z. Y.; Zhang, H. F.; Shen, P. Design and manufacture of near-net-shape metal-ceramic composites with gradient-layered structure and optimized damage tolerance. Addit. Manuf. 2024, 84, 104112.
Wei, Z. Q.; Xu, X. H. Gradient design of bio-inspired nacre-like composites for improved impact resistance. Compos. B Eng. 2021, 215, 108830.
Bouville, F.; Maire, E.; Meille, S.; Van de Moortèle, B.; Stevenson, A. J.; Deville, S. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 2014, 13, 508–514.
Magrini, T.; Moser, S.; Fellner, M.; Lauria, A.; Bouville, F.; Studart, A. R. Transparent nacre-like composites toughened through mineral bridges. Adv. Funct. Mater. 2020, 30, 2002149.
Yin, Z.; Hannard, F.; Barthelat, F. Impact-resistant nacre-like transparent materials. Science 2019, 364, 1260–1263.
Amini, A.; Khavari, A.; Barthelat, F.; Ehrlicher, A. J. Centrifugation and index matching yield a strong and transparent bioinspired nacreous composite. Science 2021, 373, 1229–1234.
Amini, A.; Tirgar, P.; Bahmani, A.; Jafari, M.; Siaj, M.; Barthelat, F.; Ehrlicher, A. Nacreous glass composites with superior performance engineered through mechanical vibration and silanization. Adv. Funct. Mater. 2024, 34, 2405008.
Shim, J.; Yun, J. M.; Yun, T.; Kim, P.; Lee, K. E.; Lee, W. J.; Ryoo, R.; Pine, D. J.; Yi, G. R.; Kim, S. O. Two-minute assembly of pristine large-area graphene based films. Nano Lett. 2014, 14, 1388–1393.
Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. 25th Anniversary article: What can be done with the Langmuir-Blodgett method. Recent developments and its critical role in materials science. Adv. Mater. 2013, 25, 6477–6512.
Bonderer, L. J.; Studart, A. R.; Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science 2008, 319, 1069–1073.
He, Z.; Wang, J. L.; Chen, S. M.; Liu, J. W.; Yu, S. H. Self-assembly of nanowires: From dynamic monitoring to precision control. Acc. Chem. Res. 2022, 55, 1480–1491.
Wan, S. J.; Jiang, L.; Cheng, Q. F. Design principles of high-performance graphene films: Interfaces and alignment. Matter 2020, 3, 696–707.
Zhang, C. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 2021, 60, 417–434.
Yu, Z. B.; Du, X. M.; Zhu, P. L.; Zhao, T.; Sun, R.; Chen, J. Z.; Wang, N.; Li, W. H. Surface modified hollow glass microspheres-epoxy composites with enhanced thermal insulation and reduced dielectric constant. Mater. Today Commun. 2022, 32, 104046.
Zhang, W. Q.; Wang, B. B.; Xu, X. W.; Feng, H. Z.; Hu, K. Z.; Su, Y.; Zhou, S. C.; Zhu, J.; Weng, G. S.; Ma, S. Q. Green and facile method for valorization of lignin to high-performance degradable thermosets. Green Chem. 2022, 24, 9659–9667.
Xu, M. H.; Pan, G. X.; Guo, Y. H.; Yang, S. C.; Fang, Z. Surface modification and structure analysis of coated iron oxide yellow pigments to improve dispersion in organic solvents. Surf. Interface Anal. 2021, 53, 933–945.
Chen, X.; Li, G. Q.; Głodek, M.; Knozowska, K.; Kujawa, J.; Zhang, P. C.; Kujawski, W. Efficient surface engineering of aluminum foil by using piranha solution strategy. Surf. Interfaces 2023, 43, 103566.
Baidya, A.; Ganayee, M. A.; Ravindran, S. J.; Tam, K. C.; Das, S. K.; Ras, R. H. A.; Pradeep, T. Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 2017, 11, 11091–11099.
Yu, Z.; Li, B. D.; Chu, J. Y.; Zhang, P. F. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr. Polym. 2018, 184, 214–220.
Guner, S. N. G.; Dericioglu, A. F. Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes. Bioinspir. Biomim. 2017, 12, 016002.
Cano, M.; Khan, U.; Sainsbury, T.; O’Neill, A.; Wang, Z. M.; McGovern, I. T.; Maser, W. K.; Benito, A. M.; Coleman, J. N. Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 2013, 52, 363–371.
Zeng, X. L.; Ye, L.; Yu, S. H.; Li, H.; Sun, R.; Xu, J. B.; Wong, C. P. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale 2015, 7, 6774–6781.
Liang, B. L.; Shu, Y. Q.; Wan, P.; Zhao, H. W.; Dong, S. H.; Hao, W. C.; Yin, P. G. Genipin-enhanced nacre-inspired montmorillonite-chitosan film with superior mechanical and UV-blocking properties. Compos. Sci. Technol. 2019, 182, 107747.
Yao, H. B.; Fang, H. Y.; Tan, Z. H.; Wu, L. H.; Yu, S. H. Biologically inspired, strong, transparent, and functional layered organic–inorganic hybrid films. Angew. Chem., Int. Ed. 2010, 49, 2140–2145.
Shu, Y. Q.; Yin, P. G.; Liang, B. L.; Wang, H.; Guo, L. Bioinspired design and assembly of layered double hydroxide/poly(vinyl alcohol) film with high mechanical performance. ACS Appl. Mater. Interfaces 2014, 6, 15154–15161.
Channa, I. A.; Ashfaq, J.; Gilani, S. J.; Chandio, A. D.; Yousuf, S.; Makhdoom, M. A.; bin Jumah, M. N. Sustainable and eco-friendly packaging films based on poly (vinyl alcohol) and glass flakes. Membranes 2022, 12, 701.
Yu, Y. D.; Kong, K. R.; Tang, R. K.; Liu, Z. M. A bioinspired ultratough composite produced by integration of inorganic ionic oligomers within polymer networks. ACS Nano 2022, 16, 7926–7936.
Gao, H. L.; Chen, S. M.; Mao, L. B.; Song, Z. Q.; Yao, H. B.; Cölfen, H.; Luo, X. S.; Zhang, F.; Pan, Z.; Meng, Y. F. et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 2017, 8, 287.
Lossada, F.; Zhu, B. L.; Walther, A. Dry processing and recycling of thick nacre-mimetic nanocomposites. Adv. Funct. Mater. 2021, 31, 2102677.
Lossada, F.; Jiao, D. J.; Hoenders, D.; Walther, A. Recyclable and light-adaptive vitrimer-based nacre-mimetic nanocomposites. ACS Nano 2021, 15, 5043–5055.
Verho, T.; Karppinen, P.; Gröschel, A. H.; Ikkala, O. Imaging inelastic fracture processes in biomimetic nanocomposites and nacre by laser speckle for better toughness. Adv. Sci. 2018, 5, 1700635.
Pan, H.; She, W.; Zuo, W. Q.; Zhou, Y.; Huang, J. L.; Zhang, Z. W.; Geng, Z. F.; Yao, Y. M.; Zhang, W. H.; Zheng, L. et al. Hierarchical toughening of a biomimetic bulk cement composite. ACS Appl. Mater. Interfaces 2020, 12, 53297–53309.
Ritchie, R. O. Toughening materials: Enhancing resistance to fracture. Philos. Trans. A Math Phys. Eng. Sci. 2021, 379, 20200437.
Kakisawa, H.; Sumitomo, T.; Inoue, R.; Kagawa, Y. Fabrication of nature-inspired bulk laminar composites by a powder processing. Compos. Sci. Technol. 2010, 70, 161–166.
Li, M.; Zhao, N. F.; Wang, M. N.; Dai, X. G.; Bai, H. Conch-shell-inspired tough ceramic. Adv. Funct. Mater. 2022, 32, 2205309.