Nanomaterials have long attracted extensive attention of researchers due to their various geometric shapes and unique physicochemical properties. The emerging bottom-up assembly methodology, which leverages weak interactions, provides an effective avenue to impart spatially oriented direction to nanoscale materials. DNA-mediated assembly stands out among these strategies because of the inherent specificity of the DNA materials, and has demonstrated to be an efficient means of engineering nanomaterials in a precise, hierarchical, and programmable way. The architectures constructed from the bottom up varying in basic units, dimensions, and configurations offer numerous opportunities for customizable and exotic performance in functional devices. Here, we concentrate on discussing the diversity of the bottom-up assembly reported over the past two decades with particular emphasis on DNA-mediated assembly, and highlight the structural complexity of the corresponding assemblies. Moreover, important advances achieved in properties of multidimensional assemblies constructed by nanomaterials are divided based on the categories and explored in detail. In addition, different types of nanomaterials that can serve as building blocks are also systematically reviewed here.
Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.
Zhang, Q.; Li, N.; Goebl, J.; Lu, Z. D.; Yin, Y. D. A systematic study of the synthesis of silver nanoplates: Is citrate a "magic" reagent. J. Am. Chem. Soc. 2011, 133, 18931–18939.
Langille, M. R.; Zhang, J.; Personick, M. L.; Li, S. Y.; Mirkin, C. A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 2012, 337, 954–957.
Ke, Y. G.; Voigt, N. V.; Gothelf, K. V.; Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 2012, 134, 1770–1774.
Li, J. X.; Zhu, Z.; Liu, F.; Zhu, B. Q.; Ma, Y. L.; Yan, J. M.; Lin, B. Q.; Ke, G. L.; Liu, R. D.; Zhou, L. J. et al. DNA-mediated morphological control of silver nanoparticles. Small 2016, 12, 5449–5487.
Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 1998, 394, 539–544.
Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 2010, 132, 3248–3249.
Pal, S.; Deng, Z. T.; Ding, B. Q.; Yan, H.; Liu, Y. DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew. Chem., Int. Ed. 2010, 49, 2700–2704.
Wei, J.; Wang, H.; Deng, Y. H.; Sun, Z. K.; Shi, L.; Tu, B.; Luqman, M.; Zhao, D. Y. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc. 2011, 133, 20369–20377.
Truong-Quoc, C.; Lee, J. Y.; Kim, K. S.; Kim, D. N. Prediction of DNA origami shape using graph neural network. Nat. Mater. 2024, 23, 984–992.
Jin, H.; Livache, C.; Kim, W. D.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I. Spin-exchange carrier multiplication in manganese-doped colloidal quantum dots. Nat. Mater. 2023, 22, 1013–1021.
Wang, Y.; Chen, J.; Zhong, Y. X.; Jeong, S.; Li, R. P.; Ye, X. C. Structural diversity in dimension-controlled assemblies of tetrahedral gold nanocrystals. J. Am. Chem. Soc. 2022, 144, 13538–13546.
Diroll, B. T.; Fedin, I.; Darancet, P.; Talapin, D. V.; Schaller, R. D. Surface-area-dependent electron transfer between isoenergetic 2D quantum wells and a molecular acceptor. J. Am. Chem. Soc. 2016, 138, 11109–11112.
Xue, C.; Hu, S. Y.; Gao, Z. H.; Wang, L.; Luo, M. X.; Yu, X.; Li, B. F.; Shen, Z. F.; Wu, Z. S. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat. Commun. 2021, 12, 2928.
Wang, Y. J.; Peng, L. C.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Goossens, S.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photon. 2024, 18, 236–242.
O'Brien, M. N.; Jones, M. R.; Lee, B.; Mirkin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 2015, 14, 833–839.
Tian, Y.; Wang, T.; Liu, W. Y.; Xin, H. L.; Li, H. L.; Ke, Y. G.; Shih, W. M.; Gang, O. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 2015, 10, 637–644.
Jiang, S. X.; Pal, N.; Hong, F.; Fahmi, N. E.; Hu, H. Y.; Vrbanac, M.; Yan, H.; Walter, N. G.; Liu, Y. Regulating DNA self-assembly dynamics with controlled nucleation. ACS Nano 2021, 15, 5384–5396.
Tikhomirov, G.; Petersen, P.; Qian, L. L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 2017, 552, 67–71.
Macfarlane, R. J.; Lee, B.; Jones, M. R.; Harris, N.; Schatz, G. C.; Mirkin, C. A. Nanoparticle superlattice engineering with DNA. Science 2011, 334, 204–208.
O'Brien, M. N.; Girard, M.; Lin, H. X.; Millan, J. A.; Olvera de la Cruz, M.; Lee, B.; Mirkin, C. A. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. Proc. Natl. Acad. Sci. USA 2016, 113, 10485–10490.
Nguyen, L.; Dass, M.; Ober, M. F.; Besteiro, L. V.; Wang, Z. M.; Nickel, B.; Govorov, A. O.; Liedl, T.; Heuer-Jungemann, A. Chiral assembly of gold-silver core-shell plasmonic nanorods on DNA origami with strong optical activity. ACS Nano 2020, 14, 7454–7461.
Vietz, C.; Kaminska, I.; Sanz Paz, M.; Tinnefeld, P.; Acuna, G. P. Broadband fluorescence enhancement with self-assembled silver nanoparticle optical antennas. ACS Nano 2017, 11, 4969–4975.
Holzmeister, P.; Pibiri, E.; Schmied, J. J.; Sen, T.; Acuna, G. P.; Tinnefeld, P. Quantum yield and excitation rate of single molecules close to metallic nanostructures. Nat. Commun. 2014, 5, 5356.
Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L. M. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J. Am. Chem. Soc. 2017, 139, 107–110.
Cheng, Z. H.; Jones, M. R. Assembly of planar chiral superlattices from achiral building blocks. Nat. Commun. 2022, 13, 4207.
Stamplecoskie, K. G.; Scaiano, J. C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 1825–1827.
Lan, X. Z.; Chen, M. L.; Hudson, M. H.; Kamysbayev, V.; Wang, Y. Y.; Guyot-Sionnest, P.; Talapin, D. V. Quantum dot solids showing state-resolved band-like transport. Nat. Mater. 2020, 19, 323–329.
Ossia, Y.; Levi, A.; Panfil, Y. E.; Koley, S.; Scharf, E.; Chefetz, N.; Remennik, S.; Vakahi, A.; Banin, U. Electric-field-induced colour switching in colloidal quantum dot molecules at room temperature. Nat. Mater. 2023, 22, 1210–1217.
Liu, D. G.; Wang, M. S.; Deng, Z. X.; Walulu, R.; Mao, C. D. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 2004, 126, 2324–2325.
Qian, H.; Tian, C.; Yu, J. W.; Guo, F.; Zheng, M. S.; Jiang, W.; Dong, Q. F.; Mao, C. D. Self-assembly of DNA nanotubes with defined diameters and lengths. Small 2014, 10, 855–858.
Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H. DNA gridiron nanostructures based on four-arm junctions. Science 2013, 339, 1412–1415.
Zhou, Y. H.; Dong, J. Y.; Zhou, C.; Wang, Q. B. Finite assembly of three-dimensional DNA hierarchical nanoarchitectures through orthogonal and directional bonding. Angew. Chem., Int. Ed. 2022, 61, e202116416.
Kimchi, O.; Goodrich, C. P.; Courbet, A.; Curatolo, A. I.; Woodall, N. B.; Baker, D.; Brenner, M. P. Self-assembly-based posttranslational protein oscillators. Sci. Adv. 2020, 6, eabc1939.
Du, M. M.; Zhou, K.; Yu, R. Z.; Zhai, Y. F.; Chen, G.; Wang, Q. B. Noncovalent self-assembly of protein crystals with tunable structures. Nano Lett. 2021, 21, 1749–1757.
Liu, H.; Matthies, M.; Russo, J.; Rovigatti, L.; Narayanan, R. P.; Diep, T.; McKeen, D.; Gang, O.; Stephanopoulos, N.; Sciortino, F. et al. Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments. Science 2024, 384, 776–781.
DeLuca, M.; Duke, D.; Ye, T.; Poirier, M.; Ke, Y. G.; Castro, C.; Arya, G. Mechanism of DNA origami folding elucidated by mesoscopic simulations. Nat. Commun. 2024, 15, 3015.
Kim, B.; Tripp, S. L.; Wei, A. Self-organization of large gold nanoparticle arrays. J. Am. Chem. Soc. 2001, 123, 7955–7956.
Sun, Y.; Xia, Y. Triangular nanoplates of silver: Synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater. 2003, 15, 695–699.
Kim, A.; Vo, T.; An, H.; Banerjee, P.; Yao, L. H.; Zhou, S.; Kim, C.; Milliron, D. J.; Glotzer, S. C.; Chen, Q. Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting. Nat. Commun. 2022, 13, 6774.
Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.
Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L. D.; Schatz, G. C.; Mirkin, C. A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 2005, 127, 5312–5313.
Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.
O'Brien, M. N.; Jones, M. R.; Brown, K. A.; Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 2014, 136, 7603–7606.
Wang, Q.; Wang, Z. P.; Li, Z.; Xiao, J. Y.; Shan, H. Y.; Fang, Z. Y.; Qi, L. M. Controlled growth and shape-directed self-assembly of gold nanoarrows. Sci. Adv. 2017, 3, e1701183.
Zhang, Q.; Ge, J. P.; Pham, T.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angew. Chem., Int. Ed. 2009, 48, 3516–3519.
Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.
Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; Xia, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132, 11372–11378.
Wu, J. J. X.; Tan, L. H.; Hwang, K.; Xing, H.; Wu, P. W.; Li, W.; Lu, Y. DNA sequence-dependent morphological evolution of silver nanoparticles and their optical and hybridization properties. J. Am. Chem. Soc. 2014, 136, 15195–15202.
Yoo, H. J.; Kim, N.; Lee, H.; Kim, D.; Ow, L. T. C.; Nam, H.; Kim, C.; Lee, S. Y.; Lee, K. Y.; Kim, D. et al. Bespoke metal nanoparticle synthesis at room temperature and discovery of chemical knowledge on nanoparticle growth via autonomous experimentations. Adv. Funct. Mater. 2024, 34, 2312561.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1, 207–211.
Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.
Gupta, A.; Ondry, J. C.; Lin, K. L.; Chen, Y. H.; Hudson, M. H.; Chen, M.; Schaller, R. D.; Rossini, A. J.; Rabani, E.; Talapin, D. V. Composition-defined optical properties and the direct-to-indirect transition in core-shell In1– x Ga x P/ZnS colloidal quantum dots. J. Am. Chem. Soc. 2023, 145, 16429–16448.
Liu, L. P.; Zhuang, Z. B.; Xie, T.; Wang, Y. G.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 2009, 131, 16423–16429.
Fedin, I.; Talapin, D. V. Colloidal CdSe quantum rings. J. Am. Chem. Soc. 2016, 138, 9771–9774.
Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.
Li, Y. J.; Tian, R. Z.; Shi, H. L.; Xu, J. Y.; Wang, T. T.; Liu, J. Q. Protein assembly: Controllable design strategies and applications in biology. Aggregate 2023, 4, e317.
Kim, J.; Lee, S.; Kim, Y.; Choi, M.; Lee, I.; Kim, E.; Yoon, C. G.; Pu, K. Y.; Kang, H. E. M.; Kim, J. S. In situ self-assembly for cancer therapy and imaging. Nat. Rev. Mater. 2023, 8, 710–725.
Bai, Y. S.; Luo, Q.; Liu, J. Q. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 2016, 45, 2756–2767.
Stephanopoulos, N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem 2020, 6, 364–405.
Kamada, A.; Rodriguez-Garcia, M.; Ruggeri, F. S.; Shen, Y.; Levin, A.; Knowles, T. P. J. Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nat. Commun. 2021, 12, 3529.
Yang, G.; Ding, H. M.; Kochovski, Z.; Hu, R. T.; Lu, Y.; Ma, Y. Q.; Chen, G. S.; Jiang, M. Highly ordered self-assembly of native proteins into 1D, 2D, and 3D structures modulated by the tether length of assembly-inducing ligands. Angew. Chem., Int. Ed. 2017, 56, 10691–10695.
Shapiro, D. M.; Mandava, G.; Yalcin, S. E.; Arranz-Gibert, P.; Dahl, P. J.; Shipps, C.; Gu, Y. Q.; Srikanth, V.; Salazar-Morales, A. I.; O'Brien, J. P. et al. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nat. Commun. 2022, 13, 829.
Lapenta, F.; Aupič, J.; Vezzoli, M.; Strmšek, Ž.; Da Vela, S.; Svergun, D. I.; Carazo, J. M.; Melero, R.; Jerala, R. Self-assembly and regulation of protein cages from pre-organised coiled-coil modules. Nat. Commun. 2021, 12, 939.
Snoj, J.; Lapenta, F.; Jerala, R. Preorganized cyclic modules facilitate the self-assembly of protein nanostructures. Chem. Sci. 2024, 15, 3673–3686.
Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738.
Tang, Y.; Liu, H.; Wang, Q.; Qi, X. D.; Yu, L.; Šulc, P.; Zhang, F.; Yan, H.; Jiang, S. X. DNA origami tessellations. J. Am. Chem. Soc. 2023, 145, 13858–13868.
Ji, W.; Xiong, X. W.; Cao, M. Y.; Zhu, Y.; Li, L.; Wang, F.; Fan, C. H.; Pei, H. Encoding signal propagation on topology-programmed DNA origami. Nat. Chem. 2024, 16, 1408–1417.
Seeman, N. C. Nanotechnology and the Double Helix. Sci. Am. 2004, 290, 64–75.
Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982, 99, 237–247.
Kallenbach, N. R.; Ma, R. I.; Seeman, N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 1983, 305, 829–831.
Ma, R. I.; Kallenbach, N. R.; Sheardy, R. D.; Petrillo, M. L.; Seeman, N. C. Three-arm nucleic acid junctions are flexible. Nucleic Acids Res. 1986, 14, 9745–9753.
Wang, X.; Seeman, N. C. Assembly and characterization of 8-Arm and 12-Arm DNA branched junctions. J. Am. Chem. Soc. 2007, 129, 8169–8176.
Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003, 301, 1882–1884.
He, Y.; Tian, Y.; Chen, Y.; Deng, Z. X.; Ribbe, A. E.; Mao, C. D. Sequence symmetry as a tool for designing DNA nanostructures. Angew. Chem., Int. Ed. 2005, 44, 6694–6696.
He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 2005, 127, 12202–12203.
He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. D. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 2006, 128, 15978–15979.
Huang, K.; Yang, D. L.; Tan, Z. Y.; Chen, S. L.; Xiang, Y.; Mi, Y. L.; Mao, C. D.; Wei, B. Self-assembly of wireframe DNA nanostructures from junction motifs. Angew. Chem., Int. Ed. 2019, 58, 12123–12127.
Yang, Q.; Chang, X.; Lee, J. Y.; Saji, M.; Zhang, F. DNA T-shaped crossover tiles for 2D tessellation and nanoring reconfiguration. Nat. Commun. 2023, 14, 7675.
Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.
Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459, 414–418.
Dietz, H.; Douglas, S. M.; Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 2009, 325, 725–730.
Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H. DNA origami with complex curvatures in three-dimensional space. Science 2011, 332, 342–346.
Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA rendering of polyhedral meshes at the nanoscale. Nature 2015, 523, 441–444.
Jun, H.; Shepherd, T. R.; Zhang, K. M.; Bricker, W. P.; Li, S. S.; Chiu, W.; Bathe, M. Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges. ACS Nano 2019, 13, 2083–2093.
Veneziano, R.; Ratanalert, S.; Zhang, K. M.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer nanoscale DNA assemblies programmed from the top down. Science 2016, 352, 1534.
Pfeifer, W. G.; Huang, C. M.; Poirier, M. G.; Arya, G.; Castro, C. E. Versatile computer-aided design of free-form DNA nanostructures and assemblies. Sci. Adv. 2023, 9, eadi0697.
Zhuang, J. M.; Garzoni, M.; Torres, D. A.; Poe, A.; Pavan, G. M.; Thayumanavan, S. Programmable nanoassemblies from non-assembling homopolymers using Ad Hoc electrostatic interactions. Angew. Chem., Int. Ed. 2017, 56, 4145–4149.
Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420–424.
Fan, Q. S.; Li, Z. W.; Li, Y. C.; Gao, A. Q.; Zhao, Y. Z.; Yang, D.; Zhu, C. H.; Brinzari, T. V.; Xu, G. F.; Pan, L. et al. Unveiling enhanced electrostatic repulsion in silica nanosphere assembly: Formation dynamics of body-centered-cubic colloidal crystals. J. Am. Chem. Soc. 2023, 145, 28191–28203.
Bian, T.; Gardin, A.; Gemen, J.; Houben, L.; Perego, C.; Lee, B.; Elad, N.; Chu, Z. L.; Pavan, G. M.; Klajn, R. Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures. Nat. Chem. 2021, 13, 940–949.
Gerling, T.; Wagenbauer, K. F.; Neuner, A. M.; Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 2015, 347, 1446–1452.
Wagenbauer, K. F.; Sigl, C.; Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 2017, 552, 78–83.
Thrasher, C. J.; Jia, F.; Yee, D. W.; Kubiak, J. M.; Wang, Y. P.; Lee, M. S.; Onoda, M.; Hart, A. J.; Macfarlane, R. J. Rationally designing the supramolecular interfaces of nanoparticle superlattices with multivalent polymers. J. Am. Chem. Soc. 2024, 146, 11532–11541.
Li, J. H.; Fan, Y. R.; Gu, Q. X.; Zhou, X. Y.; Sun, H.; Du, J. Z. Homopolymer self-assembly: Principles, driving forces, and applications. Chem. Mater. 2023, 35, 10348–10370.
Song, J. Y.; Ju, Y.; Amarasena, T. H.; Lin, Z. X.; Mettu, S.; Zhou, J. J.; Rahim, M. A.; Ang, C. S.; Cortez-Jugo, C.; Kent, S. J. et al. Influence of poly(ethylene glycol) molecular architecture on particle assembly and ex vivo particle-immune cell interactions in human blood. ACS Nano 2021, 15, 10025–10038.
Chen, J. Q.; Pan, S. J.; Zhou, J. J.; Lin, Z. X.; Qu, Y. J.; Glab, A.; Han, Y. Y.; Richardson, J. J.; Caruso, F. Assembly of bioactive nanoparticles via metal-phenolic complexation. Adv. Mater. 2022, 34, 2108624.
Sun, S. H.; Anders, S.; Hamann, H. F.; Thiele, J. U.; Baglin, J. E. E.; Thomson, T.; Fullerton, E. E.; Murray, C. B.; Terris, B. D. Polymer mediated self-assembly of magnetic nanoparticles. J. Am. Chem. Soc. 2002, 124, 2884–2885.
Abul Kashem, M. M.; Patra, D.; Perlich, J.; Rothkirch, A.; Buffet, A.; Roth, S. V.; Rotello, V. M.; Müller-Buschbaum, P. Two- and three-dimensional network of nanoparticles via polymer-mediated self-assembly. ACS Macro Lett. 2012, 1, 396–399.
Santos, P. J.; Gabrys, P. A.; Zornberg, L. Z.; Lee, M. S.; Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 2021, 591, 586–591.
Iinuma, R.; Ke, Y. G.; Jungmann, R.; Schlichthaerle, T.; Woehrstein, J. B.; Yin, P. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 2014, 344, 65–69.
Liu, L. F.; Li, Z.; Li, Y. L.; Mao, C. D. Rational design and self-assembly of two-dimensional, dodecagonal DNA quasicrystals. J. Am. Chem. Soc. 2019, 141, 4248–4251.
Wang, T. Q.; Bai, T. X.; Tan, Z. Y.; Ohayon, Y. P.; Sha, R. J.; Vecchioni, S.; Seeman, N. C.; Wei, B. Mesojunction-based design paradigm of structural DNA nanotechnology. J. Am. Chem. Soc. 2023, 145, 2455–2460.
He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 2008, 452, 198–201.
Wang, P. F.; Wu, S. Y.; Tian, C.; Yu, G. M.; Jiang, W.; Wang, G. S.; Mao, C. D. Retrosynthetic analysis-guided breaking tile symmetry for the assembly of complex DNA nanostructures. J. Am. Chem. Soc. 2016, 138, 13579–13585.
Zheng, J. P.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R. J.; Constantinou, P. E.; Ginell, S. L.; Mao, C. D.; Seeman, N. C. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 2009, 461, 74–77.
Simmons, C. R.; Buchberger, A.; Henry, S. J. W.; Novacek, A.; Fahmi, N. E.; MacCulloch, T.; Stephanopoulos, N.; Yan, H. Site-specific arrangement and structure determination of minor groove binding molecules in self-assembled three-dimensional DNA crystals. J. Am. Chem. Soc. 2023, 145, 26075–26085.
Ma, N. N.; Dai, L. Z.; Chen, Z.; Ji, M.; Wang, Y.; Tian, Y. Environment-resistant DNA origami crystals bridged by rigid DNA rods with adjustable unit cells. Nano Lett. 2021, 21, 3581–3587.
Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 2012, 338, 1177–1183.
Ong, L. L.; Hanikel, N.; Yaghi, O. K.; Grun, C.; Strauss, M. T.; Bron, P.; Lai-Kee-Him, J.; Schueder, F.; Wang, B.; Wang, P. F. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 2017, 552, 72–77.
Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K. L.; Senesi, A. J.; Mirkin, C. A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 2010, 9, 913–917.
Zhang, C.; Macfarlane, R. J.; Young, K. L.; Choi, C. H. J.; Hao, L. L.; Auyeung, E.; Liu, G. L.; Zhou, X. Z.; Mirkin, C. A. A general approach to DNA-programmable atom equivalents. Nat. Mater. 2013, 12, 741–746.
Lin, H. X.; Lee, S.; Sun, L.; Spellings, M.; Engel, M.; Glotzer, S. C.; Mirkin, C. A. Clathrate colloidal crystals. Science 2017, 355, 931–935.
Park, S. S.; Urbach, Z. J.; Brisbois, C. A.; Parker, K. A.; Partridge, B. E.; Oh, T.; Dravid, V. P.; Olvera de la Cruz, M.; Mirkin, C. A. DNA- and field-mediated assembly of magnetic nanoparticles into high-aspect ratio crystals. Adv. Mater. 2020, 32, 1906626.
Zhou, W. J.; Li, Y. W.; Je, K.; Vo, T.; Lin, H. X.; Partridge, B. E.; Huang, Z. Y.; Glotzer, S. C.; Mirkin, C. A. Space-tiled colloidal crystals from DNA-forced shape-complementary polyhedra pairing. Science 2024, 383, 312–319.
Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.
Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451, 549–552.
Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553–556.
Hill, H. D.; Macfarlane, R. J.; Senesi, A. J.; Lee, B.; Park, S. Y.; Mirkin, C. A. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett. 2008, 8, 2341–2344.
Lin, Q. Y.; Mason, J. A.; Li, Z. Y.; Zhou, W. J.; O'Brien, M. N.; Brown, K. A.; Jones, M. R.; Butun, S.; Lee, B.; Dravid, V. P. et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 2018, 359, 669–672.
Li, Y. W.; Zhou, W. J.; Tanriover, I.; Hadibrata, W.; Partridge, B. E.; Lin, H. X.; Hu, X. B.; Lee, B.; Liu, J. F.; Dravid, V. P. et al. Open-channel metal particle superlattices. Nature 2022, 611, 695–701.
Zhou, W. J.; Lim, Y.; Lin, H. X.; Lee, S.; Li, Y. W.; Huang, Z. Y.; Du, J. S.; Lee, B.; Wang, S. Z.; Sánchez-Iglesias, A. et al. Colloidal quasicrystals engineered with DNA. Nat. Mater. 2024, 23, 424–428.
Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B.; Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 2010, 5, 116–120.
Macfarlane, R. J.; Jones, M. R.; Lee, B.; Auyeung, E.; Mirkin, C. A. Topotactic interconversion of nanoparticle superlattices. Science 2013, 341, 1222–1225.
Zhu, J. H.; Kim, Y.; Lin, H. X.; Wang, S. Z.; Mirkin, C. A. pH-responsive nanoparticle superlattices with tunable DNA bonds. J. Am. Chem. Soc. 2018, 140, 5061–5064.
Lan, X.; Chen, Z.; Dai, G. L.; Lu, X. X.; Ni, W. H.; Wang, Q. B. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 2013, 135, 11441–11444.
Schreiber, R.; Do, J.; Roller, E. M.; Zhang, T.; Schüller, V. J.; Nickels, P. C.; Feldmann, J.; Liedl, T. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 2014, 9, 74–78.
Schreiber, R.; Santiago, I.; Ardavan, A.; Turberfield, A. J. Ordering gold nanoparticles with DNA origami nanoflowers. ACS Nano 2016, 10, 7303–7306.
Wang, P. F.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y. G. Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials. J. Am. Chem. Soc. 2016, 138, 7733–7740.
Ji, M.; Ma, N. N.; Tian, Y. 3D lattice engineering of nanoparticles by DNA shells . Small 2019, 15, 1805401.
Xin, X. D.; Wang, L. H.; Wang, K. W.; Dai, L. Z.; Cao, H.; Li, Z.; Tian, Y. Stepwise assembly of nanoclusters guided by DNA origami frames with high-throughput. Chem. Commun. 2020, 56, 4918–4921.
Xie, X. L.; Ji, M.; Yan, X. H.; Yu, Y. F.; Wang, Y.; Ma, N. N.; Xing, H.; Tian, Y. Layer-controllable "2.5D" DNA origami crystals synthesized by a hierarchical assembly strategy. Angew. Chem., Int. Ed. 2024, 63, e202402312.
Martens, K.; Funck, T.; Santiago, E. Y.; Govorov, A. O.; Burger, S.; Liedl, T. Onset of chirality in plasmonic meta-molecules and dielectric coupling. ACS Nano 2022, 16, 16143–16149.
Shen, C.; Lan, X.; Zhu, C.; Zhang, W.; Wang, L.; Wang, Q. Spiral patterning of Au nanoparticles on Au nanorod surface to form chiral AuNR@AuNP helical superstructures templated by DNA origami. Adv. Mater. 2017, 29, 1606533.
Benn, F.; Haley, N. E. C.; Lucas, A. E.; Silvester, E.; Helmi, S.; Schreiber, R.; Bath, J.; Turberfield, A. J. Chiral DNA Origami nanotubes with well-defined and addressable inside and outside surfaces. Angew. Chem., Int. Ed. 2018, 57, 7687–7690.
Heck, C.; Kanehira, Y.; Kneipp, J.; Bald, I. Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses. Angew. Chem., Int. Ed. 2018, 57, 7444–7447.
Pal, S.; Deng, Z. T.; Wang, H. N.; Zou, S. L.; Liu, Y.; Yan, H. DNA directed self-assembly of anisotropic plasmonic nanostructures. J. Am. Chem. Soc. 2011, 133, 17606–17609.
Li, Y.; Pei, J.; Lu, X. H.; Jiao, Y. F.; Liu, F. S.; Wu, X. H.; Liu, J. B.; Ding, B. Q. Hierarchical assembly of super-DNA origami based on a flexible and covalent-bound branched DNA structure. J. Am. Chem. Soc. 2021, 143, 19893–19900.
Kuzyk, A.; Schreiber, R.; Zhang, H.; Govorov, A. O.; Liedl, T.; Liu, N. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 2014, 13, 862–866.
Zhou, C.; Duan, X. Y.; Liu, N. A plasmonic nanorod that walks on DNA origami. Nat. Commun. 2015, 6, 8102.
Lan, X.; Liu, T. J.; Wang, Z. M.; Govorov, A. O.; Yan, H.; Liu, Y. DNA-guided plasmonic helix with switchable chirality. J. Am. Chem. Soc. 2018, 140, 11763–11770.
Liu, W. Y.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 2016, 8, 867–873.
Dong, Y. X.; Liu, J. L.; Lu, X. Z.; Duan, J. L.; Zhou, L. Q.; Dai, L. Z.; Ji, M.; Ma, N. N.; Wang, Y.; Wang, P. et al. Two-stage assembly of nanoparticle superlattices with multiscale organization. Nano Lett. 2022, 22, 3809–3817.
Michelson, A.; Minevich, B.; Emamy, H.; Huang, X. J.; Chu, Y. S.; Yan, H. F.; Gang, O. Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. Science 2022, 376, 203–207.
Dai, L. Z.; Hu, X. X.; Ji, M.; Ma, N. N.; Xing, H.; Zhu, J. J.; Min, Q. H.; Tian, Y. Programming the morphology of DNA origami crystals by magnesium ion strength. Proc. Natl. Acad. Sci. USA 2023, 120, e2302142120.
Tian, Y.; Zhang, Y. G.; Wang, T.; Xin, H. L.; Li, H. L.; Gang, O. Lattice engineering through nanoparticle-DNA frameworks. Nat. Mater. 2016, 15, 654–661.
Liu, W. Y.; Tagawa, M.; Xin, H. L.; Wang, T.; Emamy, H.; Li, H. L.; Yager, K. G.; Starr, F. W.; Tkachenko, A. V.; Gang, O. Diamond family of nanoparticle superlattices. Science 2016, 351, 582–586.
Tian, Y.; Lhermitte, J. R.; Bai, L.; Vo, T.; Xin, H. L.; Li, H. L.; Li, R. P.; Fukuto, M.; Yager, K. G.; Kahn, J. S. et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 2020, 19, 789–796.
Ji, M.; Liu, J. L.; Dai, L. Z.; Wang, L.; Tian, Y. Programmable cocrystallization of DNA origami shapes. J. Am. Chem. Soc. 2020, 142, 21336–21343.
Ji, M.; Zhou, Z. Y.; Cao, W. H.; Ma, N. N.; Xu, W. G.; Tian, Y. A universal way to enrich the nanoparticle lattices with polychrome DNA origami "homologs". Sci. Adv. 2022, 8, eadc9755.
Huang, S. J.; Ji, M.; Wang, Y.; Tian, Y. Geometry guided crystallization of anisotropic DNA origami shapes. Chem. Sci. 2023, 14, 11507–11514.
Coropceanu, I.; Janke, E. M.; Portner, J.; Haubold, D.; Nguyen, T. D.; Das, A.; Tanner, C. P. N.; Utterback, J. K.; Teitelbaum, S. W.; Hudson, M. H. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 2022, 375, 1422–1426.
Grabenhorst, L.; Sturzenegger, F.; Hasler, M.; Schuler, B.; Tinnefeld, P. Single-molecule FRET at 10 MHz count rates. J. Am. Chem. Soc. 2024, 146, 3539–3544.
Haddadnezhad, M.; Jung, I.; Oh, M. J.; Park, S. Ready-to-use free-standing super-powder made with complex nanoparticles for SERS. Adv. Mater. 2024, 36, 2400068.
Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.
Peil, A.; Zhan, P. F.; Duan, X. Y.; Krahne, R.; Garoli, D.; Liz-Marzán, L. M.; Liu, N. Transformable plasmonic helix with swinging gold nanoparticles. Angew. Chem., Int. Ed. 2023, 62, e202213992.
Niu, R. J.; Song, C. Y.; Gao, F.; Fang, W. N.; Jiang, X. Y.; Ren, S. K.; Zhu, D.; Su, S.; Chao, J.; Chen, S. F. et al. DNA origami-based nanoprinting for the assembly of plasmonic nanostructures with single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2021, 60, 11695–11701.
Li, K.; Wang, K.; Qin, W. W.; Deng, S. H.; Li, D.; Shi, J. Y.; Huang, Q.; Fan, C. H. DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. J. Am. Chem. Soc. 2015, 137, 4292–4295.
Fu, J. J.; Zhu, W. L.; Chen, Y.; Yin, Z. Y.; Li, Y. Y.; Liu, J.; Zhang, H. Y.; Zhu, J. J.; Sun, S. H. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 14100–14103.
Kumari, G.; Kamarudheen, R.; Zoethout, E.; Baldi, A. Photocatalytic surface restructuring in individual silver nanoparticles. ACS Catal. 2021, 11, 3478–3486.
Zhang, F. H.; Liu, R. J.; Wei, Y. Z.; Wei, J. J.; Yang, Z. J. Self-assembled open porous nanoparticle superstructures. J. Am. Chem. Soc. 2021, 143, 11662–11669.
Auyeung, E.; Morris, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA. J. Am. Chem. Soc. 2015, 137, 1658–1662.
Wang, S. Z.; Park, S. S.; Buru, C. T.; Lin, H. X.; Chen, P. C.; Roth, E. W.; Farha, O. K.; Mirkin, C. A. Colloidal crystal engineering with metal-organic framework nanoparticles and DNA. Nat. Commun. 2020, 11, 2495.
Zhang, D.; Chen, Y. D.; Hao, M.; Xia, Y. N. Putting hybrid nanomaterials to work for biomedical applications. Angew. Chem., Int. Ed. 2024, 63, e202319567.
Levin, A.; Hakala, T. A.; Schnaider, L.; Bernardes, G. J. L.; Gazit, E.; Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634.
Egwu, C. O.; Aloke, C.; Onwe, K. T.; Umoke, C. I.; Nwafor, J.; Eyo, R. A.; Chukwu, J. A.; Ufebe, G. O.; Ladokun, J.; Audu, D. T. et al. Nanomaterials in drug delivery: Strengths and opportunities in medicine. Molecules 2024, 29, 2584.
Qi, G. B.; Gao, Y. J.; Wang, L.; Wang, H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018, 30, 1703444.
Zhang, W. Q.; Zeng, Y. H.; Xiao, Q. Q.; Wu, Y. Y.; Liu, J. L.; Wang, H. C.; Luo, Y. T.; Zhan, J.; Liao, N.; Cai, Y. B. An in- situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses. Nat. Commun. 2024, 15, 5670.
Rahman, M. M.; Wang, J.; Wang, G. S.; Su, Z. P.; Li, Y. Z.; Chen, Y. D.; Meng, J. G.; Yao, Y.; Wang, L. F.; Wilkens, S. et al. Chimeric nanobody-decorated liposomes by self-assembly. Nat. Nanotechnol. 2024, 19, 818–824.
Saccà, B.; Niemeyer, C. M. DNA origami: The art of folding DNA. Angew. Chem., Int. Ed. 2012, 51, 58–66.
Li, Y. G.; Cu, Y. T. H.; Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol. 2005, 23, 885–889.
Bandy, T. J.; Brewer, A.; Burns, J. R.; Marth, G.; Nguyen, T.; Stulz, E. DNA as supramolecular scaffold for functional molecules: Progress in DNA nanotechnology. Chem. Soc. Rev. 2011, 40, 138–148.
Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264.
Hu, X. X.; Chi, H. L.; Fu, X. Y.; Chen, J. L.; Dong, L. Y.; Jiang, S. Q.; Li, Y.; Chen, J. Y.; Cheng, M.; Min, Q. H. et al. Tunable multivalent aptamer-based DNA nanostructures to regulate multiheteroreceptor-mediated tumor recognition. J. Am. Chem. Soc. 2024, 146, 2514–2523.