AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (39.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Platelet-derived extracellular vesicles for endometrial regeneration towards efficient live birth

Dongxiao Li1Yanhong Yang1Bo Tian3Chenmeng Zhou2Shuting Gu1Wenju Chang3Bingbing Wu2Dantong Dong1Fang Xu2Ziyang Yu1Ling Zhou1Chao Wang2 ( )Hong Zhang1 ( )
Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Show Author Information

Graphical Abstract

This work reports a novel platelet-derived extracellular vesicles (PEVs), which exhibit substantial regenerative potential in addressing endometrial injuries, effectively promoting endometrial regeneration and achieving a high live birth success rate in a murine model of endometrial damage. These results lay a foundation for the clinical application of PEV-based therapies in endometrial regeneration.

Abstract

Uterine infertility is a major global issue causing substantial physical and psychological hardship for individuals struggling to conceive, while endometrium injury is one of the crucial factors causing infertility. Here, we demonstrate that platelet-derived extracellular vesicles (PEVs) have excellent regenerative ability in treating endometrial injuries, facilitating endometrium regeneration and resulting in a highly efficient live birth rate in the endometrium-injured murine model. We further investigated the underlying mechanisms by which PEVs affect the endometrium, showing their ability to promote neovascularization and suppress fibrosis. More importantly, the regenerative endometrium is more receptive to embrace the embryo, which can sustain the normal pregnancy. Our finding serves as a foundational basis for advancing the clinical translation of platelet-rich plasma (PRP) and PEVs therapies for endometrial regeneration.

Electronic Supplementary Material

Download File(s)
7176_ESM.pdf (1.6 MB)

References

[1]

Harris, E. Infertility affects 1 in 6 people globally. JAMA 2023, 329, 1443.

[2]

Sbaragli, C.; Morgante, G.; Goracci, A.; Hofkens, T.; De Leo, V.; Castrogiovanni, P. Infertility and psychiatric morbidity. Fertil. Steril. 2008, 90, 2107–2111.

[3]

Pirtea, P.; de Ziegler, D.; Ayoubi, J. M. Uterine infertility, the last frontier. Fertil. Steril. 2022, 118, 463–464.

[4]

de Ziegler, D.; Toner, J. P. Fertility workups: The times they are a-changin'. Fertil. Steril. 2022, 118, 5–7.

[5]

Carbonnel, M.; Pirtea, P.; de Ziegler, D.; Ayoubi, J. M. Uterine factors in recurrent pregnancy losses. Fertil. Steril. 2021, 115, 538–545.

[6]

Khan, Z. Etiology, risk factors, and management of asherman syndrome. Obstet. Gynecol. 2023, 142, 543–554.

[7]

Jin, Z. Q.; Li, J. D.; Yang, E. T.; Shi, H.; Bu, Z. Q.; Niu, W. B.; Wang, F.; Huo, M. Z.; Song, H.; Zhang, Y. L. Effect of endometrial thickness changes on clinical pregnancy rates after progesterone administration in a single frozen-thawed euploid blastocyst transfer cycle using natural cycles with luteal support for PGT-SR- and PGT-M-assisted reproduction: a retrospective cohort study. Reprod. Biol. Endocrinol. 2021, 19, 154.

[8]

Wang, S. M.; Qi, L.; Liu, Y. P.; Shi, H.; Chen, X. L.; Wang, N. N.; Su, Y. C. Suitable endometrial thickness on embryo transfer day may reduce ectopic pregnancy rate and improve clinical pregnancy rate. BMC Pregnancy Childbirth 2023, 23, 517.

[9]

Lv, H. N.; Zhao, G. F.; Jiang, P. P.; Wang, H. Y.; Wang, Z. Y.; Yao, S. M.; Zhou, Z. H.; Wang, L. M.; Liu, D.; Deng, W. B. et al. Deciphering the endometrial niche of human thin endometrium at single-cell resolution. Proc Natl Acad Sci USA 2022, 119, e2115912119.

[10]

Gharibeh, N.; Aghebati-Maleki, L.; Madani, J.; Pourakbari, R.; Yousefi, M.; Ahmadian Heris, J. Cell-based therapy in thin endometrium and Asherman syndrome. Stem Cell Res. Ther. 2022, 13, 33.

[11]

Oneto, P.; Etulain, J. PRP in wound healing applications. Platelets 2021, 32, 189–199.

[12]

Everts, P.; Onishi, K.; Jayaram, P.; Lana, J. F.; Mautner, K. Platelet-rich plasma: New performance understandings and therapeutic considerations in 2020. Int. J. Mol. Sci. 2020, 21, 7794.

[13]

Sharara, F. I.; Lelea, L. L.; Rahman, S.; Klebanoff, J. S.; Moawad, G. N. A narrative review of platelet-rich plasma (PRP) in reproductive medicine. J. Assist. Reprod. Genet. 2021, 38, 1003–1012.

[14]

Dohan Ehrenfest, D. M.; Rasmusson, L.; Albrektsson, T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167.

[15]

Jurk, K.; Kehrel, B. E. Platelets: Physiology and biochemistry. Semin. Thromb. Hemost. 2005, 31, 381–392.

[16]

Ramaswamy Reddy, S. H.; Reddy, R.; Babu, N. C.; Ashok, G. N. Stem-cell therapy and platelet-rich plasma in regenerative medicines: A review on pros and cons of the technologies. J. Oral Maxillofac. Pathol. 2018, 22, 367–374.

[17]

Everts, P. A.; van Erp, A.; DeSimone, A.; Cohen, D. S.; Gardner, R. D. Platelet rich plasma in orthopedic surgical medicine. Platelets 2021, 32, 163–174.

[18]

Ma, Q. L.; Fan, Q.; Xu, J. L.; Bai, J. Y.; Han, X.; Dong, Z. L.; Zhou, X. Z.; Liu, Z.; Gu, Z.; Wang, C. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles. Matter 2020, 3, 287–301.

[19]

Zhu, W. D.; Dong, Y. Q.; Xu, P. C.; Pan, Q.; Jia, K. Y.; Jin, P. S.; Zhou, M.; Xu, Y. B.; Guo, R.; Cheng, B. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater. 2022, 154, 212–230.

[20]

Dai, Z. Q.; Xia, C.; Zhao, T. X.; Wang, H. L.; Tian, H. S.; Xu, O. Y.; Zhu, X. B.; Zhang, J.; Chen, P. F. Platelet-derived extracellular vesicles ameliorate intervertebral disc degeneration by alleviating mitochondrial dysfunction. Mater. Today Bio 2023, 18, 100512.

[21]

Antich-Rosselló, M.; Forteza-Genestra, M. A.; Monjo, M.; Ramis, J. M. Platelet-derived extracellular vesicles for regenerative medicine. Int. J. Mol. Sci. 2021, 22, 8580.

[22]

Meng, W. R.; He, C. S.; Hao, Y. Y.; Wang, L. L.; Li, L.; Zhu, G. Q. Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Deliv. 2020, 27, 585–598.

[23]

Vader, P.; Mol, E. A.; Pasterkamp, G.; Schiffelers, R. M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 148–156.

[24]

Zhang, X.; Zhang, H. B.; Gu, J. M.; Zhang, J. Y.; Shi, H.; Qian, H.; Wang, D. Q.; Xu, W. R.; Pan, J. M.; Santos, H. A. Engineered extracellular vesicles for cancer therapy. Adv. Mater. 2021, 33, 2005709.

[25]

Zhou, Z. Y.; Luo, R. F.; Chen, L.; Hu, C.; Chen, C.; Maitz, M. F.; Li, L. H.; Yang, L.; Deng, D.; An, Y. Q. et al. Dressing blood-contacting devices with platelet membrane enables large-scale multifunctional biointerfacing. Matter 2022, 5, 2334–2351.

[26]

Ma, Q. L.; Yao, C. L.; Wu, Y.; Wang, H.; Fan, Q.; Yang, Q. Y.; Xu, J. L.; Dai, H. X.; Zhang, Y.; Xu, F. et al. Neurological disorders after severe pneumonia are associated with translocation of endogenous bacteria from the lung to the brain. Sci. Adv. 2023, 9, eadi0699.

[27]

Cao, Y. M.; Qi, J.; Wang, J.; Chen, L.; Wang, Y.; Long, Y. J.; Li, B. Y.; Lai, J. L.; Yao, Y. J.; Meng, Y. W. et al. Injectable "homing-like" bioactive short-fibers for endometrial repair and efficient live births. Adv. Sci. (Weinh.) 2024, 11, 2306507.

[28]

Lee, D.; Ahn, J.; Koo, H. S.; Kang, Y. J. Intrauterine botulinum toxin A administration promotes endometrial regeneration mediated by IGFBP3-dependent OPN proteolytic cleavage in thin endometrium. Cell. Mol. Life Sci. 2023, 80, 26.

[29]

Yi, X.; Liu, F.; Gao, K. J.; Chen, F.; Wang, Y. F.; Li, H. Y.; Wang, X. F.; Huang, Y.; Fu, H. J.; Zhou, W. J. et al. Reconstructable uterus-derived materials for uterus recovery toward efficient live births. Adv. Mater. 2022, 34, 2106510.

Nano Research
Article number: 94907176
Cite this article:
Li D, Yang Y, Tian B, et al. Platelet-derived extracellular vesicles for endometrial regeneration towards efficient live birth. Nano Research, 2025, 18(2): 94907176. https://doi.org/10.26599/NR.2025.94907176

169

Views

24

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 September 2024
Revised: 21 November 2024
Accepted: 05 December 2024
Published: 06 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return