PDF (18.9 MB)
Collect
Submit Manuscript
Show Outline
Figures (8)

Research Article | Open Access

A color-changing carbon dots/hydrogel composite for human motion sensing and sweat pH detection

Junjie CaiHuajiang HuJiurong LiJunfei LiaoXiao Gong ()
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Show Author Information

Graphical Abstract

View original image Download original image
The rapid synthesis of novel pH-sensitive carbon dots (CDs) is reported using a simple solvothermal method. The luminescence emission wavelength of the CDs can change with pH value. A color-changing CDs@hydrogel for pH sensing is designed based on the pH sensitivity of the CDs, and the CDs@hydrogel has conductive properties that enable it to be used for motion sensing and sweat pH detection.

Abstract

Carbon dots (CDs) are a type of fluorescent nanomaterial that have gained significant attention due to their simple synthesis method and excellent optical properties. The unique structure of CDs also allows for effective luminescence tunability. CDs have been reported to be pH-sensitive in many studies. However, most of these reports are based on the variation of the luminescence intensity of CDs with pH change. There are few reports on exploring the linearly tunable variation of the luminescence wavelength with pH value. Hence, we synthesized novel pH-sensitive CDs using a simple solvothermal method. The synthesized CDs can change their luminescence emission wavelength by simply adjusting the pH of the solution. The change in emission wavelength may be due to the alteration in the surface state of the CDs caused by the pH change. This luminous color change of the CDs allows for visual detection of the pH of the solution. In addition, a color-changing hydrogel composite for pH sensing was designed based on the pH sensitivity of the CDs. The CDs@hydrogel has conductive properties that enable it to be used for motion sensing and sweat pH detection.

Electronic Supplementary Material

Download File(s)
7180_ESM.pdf (1.8 MB)

References

[1]

Zhang, L.; Hao, Y. M.; Liu, Y.; Dong, Y. P.; Chen, Z. X.; Dong, W. J.; Zhao, Z. H.; Hu, Q.; Dong, C.; Gong, X. J. Nickel doping: Improving the optical properties of carbon dots and increasing the sensitivity for detecting pH and water. J. Alloys Compd. 2024, 976, 173131.

[2]

Chatzimitakos, T. G.; Kasouni, A. I.; Stalikas, C. D. Multi-purpose nitrogen and phosphorous codoped carbon nanodots for fluorescence-based sensing and bioimaging. Chem. Eng. J. 2023, 476, 146686.

[3]

Tao, X. Y.; Liao, M.; Wu, F. X.; Jiang, Y. H.; Sun, J. P.; Shi, S. H. Designing of biomass-derived carbon quantum dots@polyvinyl alcohol film with excellent fluorescent performance and pH-responsiveness for intelligent detection. Chem. Eng. J. 2022, 443, 136442.

[4]

Ci, Q.; Wang, Y. Y.; Wu, B.; Coy, E.; Li, J. J.; Jiang, D. Y.; Zhang, P. F.; Wang, G. C. Fe-doped carbon dots as NIR-II fluorescence probe for in vivo gastric imaging and pH detection. Adv. Sci 2023, 10, e2206271.

[5]

Durrani, S.; Yang, Z. H. Y.; Zhang, J.; Wang, Z. H.; Wang, H. Y.; Durrani, F.; Wu, F. G.; Lin, F. M. Nucleus-targeting pH-responsive carbon dots for fast nucleus pH detection. Talanta 2023, 252, 123855.

[6]

Wang, R. X.; Wang, X. F.; Sun, Y. M. One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sens. Actuators B: Chem. 2017, 241, 73–79.

[7]

Bei, Y. Y.; Arkin, K.; Zheng, Y. X.; Ma, X. S.; Zhao, J.; Jin, H. M.; Shang, Q. K. Construction of a ratiometric fluorescent probe for visual detection of urea in human urine based on carbon dots prepared from Toona sinensis leaves and 5-carboxyfluorescein. Anal. Chim. Acta 2023, 1240, 340733.

[8]

Liu, W. J.; Li, C.; Sun, X. B.; Pan, W.; Wang, J. P. Carbon-dot-based ratiometric fluorescent pH sensor for the detections of very weak acids assisted by auxiliary reagents that contribute to the release of protons. Sens. Actuators B: Chem. 2017, 244, 441–449.

[9]

Shangguan, J. F.; He, D. G.; He, X. X.; Wang, K. M.; Xu, F. Z.; Liu, J. Q.; Tang, J. L.; Yang, X.; Huang, J. Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal. Chem. 2016, 88, 7837–7843.

[10]

Cui, F. C.; Xi, L. Q.; Wang, D. F.; Ren, L. K.; Tan, X. Q.; Li, X. P.; Li, J. R.; Li, T. T. Advanced in carbon dot-based hydrogels for antibacterial, detection and adsorption. Coord. Chem. Rev. 2023, 497, 215457.

[11]

Zhang, Y. W.; Dai, Y.; Xia, F.; Zhang, X. J. Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting. Nano Energy 2022, 104, 107977.

[12]

Chen, J. Y.; Liu, F. F.; Abdiryim, T.; Liu, X. An overview of conductive composite hydrogels for flexible electronic devices. Adv. Compos. Hybrid Mater. 2024, 7, 35.

[13]

Zhu, J. B.; Tao, J. C.; Yan, W.; Song, W. X. Pathways toward wearable and high-performance sensors based on hydrogels: Toughening networks and conductive networks. Natl. Sci. Rev. 2023, 10, nwad180.

[14]

Wang, Y. J.; Lv, T. J.; Yin, K. Y.; Feng, N.; Sun, X. F.; Zhou, J.; Li, H. G. Carbon dot-based hydrogels: Preparations, properties, and applications. Small 2023, 19, e2207048.

[15]

Xu, Q.; Wu, Z. J.; Zhao, W.; He, M. P.; Guo, N.; Weng, L.; Lin, Z. P.; Taleb, M. F. A.; Ibrahim, M. M.; Singh, M. V. et al. Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: An overview. Adv. Compos. Hybrid Mater. 2023, 6, 203.

[16]

Wang, Z. W.; Wei, H.; Huang, Y. J.; Wei, Y.; Chen, J. Naturally sourced hydrogels: Emerging fundamental materials for next-generation healthcare sensing. Chem. Soc. Rev. 2023, 52, 2992–3034.

[17]

Kurian, A. G.; Singh, R. K.; Sagar, V.; Lee, J. H.; Kim, H. W. Nanozyme-engineered hydrogels for anti-inflammation and skin regeneration. Nano-Micro Lett. 2024, 16, 110.

[18]

Taboada, G. M.; Dahis, D.; Dosta, P.; Edelman, E.; Artzi, N. Sprayable hydrogel sealant for gastrointestinal wound shielding. Adv. Mater. 2024, 36, 2311798.

[19]

Daly, A. C.; Riley, L.; Segura, T.; Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 2019, 5, 20–43.

[20]

Hu, L. X.; Chee, P. L.; Sugiarto, S.; Yu, Y.; Shi, C. Q.; Yan, R.; Yao, Z. Q.; Shi, X. W.; Zhi, J. C.; Kai, D. et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, 2205326.

[21]

Prince, E.; Kumacheva, E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat. Rev. Mater. 2019, 4, 99–115.

[22]

Li, Z. K.; Lu, J. J.; Ji, T.; Xue, Y. M.; Zhao, L. B.; Zhao, K.; Jia, B. Q.; Wang, B.; Wang, J. X.; Zhang, S. M. et al. Self-healing hydrogel bioelectronics. Adv. Mater. 2024, 36, 2306350.

[23]

Sui, B.; Li, Y. F.; Yang, B. Nanocomposite hydrogels based on carbon dots and polymers. Chin. Chem. Lett. 2020, 31, 1443–1447.

[24]

Sousa, C.; Sá E Melo, T.; Gèze, M.; Gaullier, J. M.; Mazière, J. C.; Santus, R. Solvent polarity and ph effects on the spectroscopic properties of neutral red: Application to lysosomal microenvironment probing in living cells. Photochem. Photobiol. 1996, 63, 601–607.

[25]

Madonia, A.; Minervini, G.; Terracina, A.; Pramanik, A.; Martorana, V.; Sciortino, A.; Carbonaro, C. M.; Olla, C.; Sibillano, T.; Giannini, C. et al. Dye-derived red-emitting carbon dots for lasing and solid-state lighting. ACS Nano 2023, 17, 21274–21286.

[26]

Li, J. R.; Chen, J. C.; Zhao, X. J.; Vomiero, A.; Gong, X. High-loading of organosilane-grafted carbon dots in high-performance luminescent solar concentrators with ultrahigh transparency. Nano Energy 2023, 115, 108674.

[27]

Wu, M. Y.; Li, J. R.; Wu, Y. Z.; Gong, X.; Wu, M. Design of a synthetic strategy to achieve enhanced fluorescent carbon dots with sulfur and nitrogen codoping and its multifunctional applications. Small 2023, 19, 2302764.

[28]

Li, J. R.; Zhao, H. G.; Zhao, X. J.; Gong, X. Boosting efficiency of luminescent solar concentrators cusing ultra-bright carbon dots with large Stokes shift. Nanoscale Horiz. 2022, 8, 83–94.

[29]

Chen, J. C.; Zhao, H. G.; Li, Z. L.; Zhao, X. J.; Gong, X. Highly efficient tandem luminescent solar concentrators based on eco-friendly copper iodide based hybrid nanoparticles and carbon dots. Energy Environ. Sci. 2022, 15, 799–805.

[30]

Hu, T. T.; Wen, Z. Q.; Wang, C.; Thomas, T.; Wang, C. X.; Song, Q. J.; Yang, M. H. Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Adv. 2019, 1, 1413–1420.

[31]

Jiao, Y.; Liu, Y.; Meng, Y. T.; Gao, Y. F.; Lu, W. J.; Liu, Y.; Gong, X. J.; Shuang, S. M.; Dong, C. Novel processing for color-tunable luminescence carbon dots and their advantages in biological systems. ACS Sustain. Chem. Eng. 2020, 8, 8585–8592.

[32]

Paydar, S.; Feizi, F.; Shamsipur, M.; Barati, A.; Chehri, N.; Taherpour, A.; Jamshidi, M. An ideal ratiometric fluorescent probe provided by the surface modification of carbon dots for the determination of Pb2+. Sens. Actuators B: Chem. 2022, 369, 132243.

[33]

Cai, S.; Li, J. Q.; Sun, P. J.; Tao, J.; Fu, Y. F.; Yang, R.; Li, Z. H.; Qu, L. B. Red emissive carbon dots-based polymer beads for recyclable and ultra-sensitive detection of malachite green in fish tissue. Sens. Actuators B: Chem. 2023, 380, 133311.

[34]

Zhang, X.; Tan, X. Y.; Hu, Y. P. Blue/yellow emissive carbon dots coupled with curcumin: A hybrid sensor toward fluorescence turn-on detection of fluoride ion. J. Hazard. Mater. 2021, 411, 125184.

[35]

Li, T. Z.; Shi, W.; Shuang, E.; Mao, Q. X.; Chen, X. W. Green preparation of carbon dots with different surface states simultaneously at room temperature and their sensing applications. J. Colloid Interface Sci. 2021, 591, 334–342.

[36]

Yan, F.; Li, J. R.; Zhao, X. J.; Gong, X. Unveiling unconventional luminescence behavior of multicolor carbon dots derived from phenylenediamine. J. Phys. Chem. Lett. 2023, 14, 5975–5984.

[37]

Zhang, Q.; Wang, R. Y.; Feng, B. W.; Zhong, X. X.; Ostrikov, K. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 6856.

[38]

Wu, Y. H.; Li, J. R.; Zhao, X. J.; Gong, X. Nickel-doped carbon dots with enhanced and tunable multicolor fluorescence emission for multicolor light-emitting diodes. Carbon 2023, 201, 796–804.

[39]

Shen, J.; Zheng, X. J.; Lin, L. L.; Xu, H. J.; Xu, G. H. Reaction time-controlled synthesis of multicolor carbon dots for white light-emitting diodes. ACS Appl. Nano Mater. 2023, 6, 2478–2490.

[40]

Li, L.; Li, Y. T.; Ye, Y.; Guo, R. T.; Wang, A. N.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 2021, 15, 6872–6885.

[41]

Cao, M. Y.; Zhao, X. J.; Gong, X. Ionic liquid-assisted fast synthesis of carbon dots with strong fluorescence and their tunable multicolor emission. Small 2022, 18, e2106683.

[42]

Ru, Y.; Sui, L.; Song, H. Q.; Liu, X. J.; Tang, Z. Y.; Zang, S. Q.; Yang, B.; Lu, S. Y. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence. Angew. Chem., Int. Ed. 2021, 60, 14091–14099.

[43]

Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

[44]

Singh, M. K.; Pal, H.; Bhasikuttan, A. C.; Sapre, A. V. Dual solvatochromism of neutral red. Photochem. Photobiol. 1998, 68, 32–38.

[45]

Yuan, T.; Yuan, F. L.; Sui, L.; Zhang, Y.; Li, Y. C.; Li, X. H.; Tan, Z. A.; Fan, L. Z. Carbon quantum dots with near-unity quantum yield bandgap emission for electroluminescent light-emitting diodes. Angew. Chem., Int. Ed. 2023, 135, e202218568.

[46]

Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.

[47]

Jia, H. R.; Wang, Z. B.; Yuan, T.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots. Adv. Sci. 2019, 6, 1900397.

[48]

Yuan, F. L.; Wang, Y. K.; Sharma, G.; Dong, Y. T.; Zheng, X. P.; Li, P. C.; Johnston, A.; Bappi, G.; Fan, J. Z.; Kung, H. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photonics 2020, 14, 171–176.

[49]
Liu, Y. P.; Guo, C.; Wu, G. F.; Lv, W. J.; Zhou, R. C.; Qiu, W.; Zhou, Y.; Xu, Q.; Xu, C. M.; Niu, Y. C. Uniformly dispersed bismuth metal nano catalyst modified carbon cloth electrode for iron-chromium flow battery. Nano Research Energy, in press, https://doi.org/10.26599/NRE.2024.9120135.
[50]

Zhang, Q.; Wang, F. Q.; Wang, R. Y.; Liu, J. L.; Ma, Y. P. X.; Qin, X. R.; Zhong, X. X. Activating one/two-photon excited red fluorescence on carbon dots: Emerging n → π photon transition induced by amino protonation. Adv. Sci. 2023, 10, e2207566.

[51]

Tang, Y. Y.; Xu, Q.; Zhang, X. Y.; Zhu, R. Y.; Zhao, N.; Wang, J. C. Expediting carbon dots synthesis by the active adaptive method with machine learning and applications in dental diagnosis and treatment. Nano Res. 2024, 17, 10109–10118.

[52]

He, Q. Y.; Huang, Y.; Wang, S. Y. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 2018, 28, 1705069.

Nano Research
Article number: 94907180
Cite this article:
Cai J, Hu H, Li J, et al. A color-changing carbon dots/hydrogel composite for human motion sensing and sweat pH detection. Nano Research, 2025, 18(2): 94907180. https://doi.org/10.26599/NR.2025.94907180
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return