PDF (29.4 MB)
Collect
Submit Manuscript
Research Article | Open Access | Online First

Chiral photonic micro-particles enabling circularly polarized luminescence for NIR-II optical anti-counterfeiting

Jiang Huang1,3Xuefeng Yang1Xue Jin1Hongchao Yang2 ()Pengfei Duan1,3 ()
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

View original image Download original image
The combination of chiral photonic micro-particles (CPMPs) with near-infrared (NIR) II luminescent quantum dots enables multi-color high glum NIR circularly polarized luminescence (NIR CPL). This simple strategy expands the applications of NIR CPL materials in cutting-edge encryption applications such as displays and information encryption.

Abstract

The second near-infrared (NIR-II, 1000–1700 nm) circularly polarized light holds significant untapped potential in areas such as optical anti-counterfeiting and information encryption due to its deeply covert nature. However, the typically low luminescence dissymmetry factor (glum) of circularly polarized luminescence (CPL) materials, particularly in NIR CPL materials, limits their practical application. Addressing this challenge, it is crucial to develop NIR CPL materials with enhanced glum. In this study, we present a series of chiral photonic micro-particles (CPMPs) with tunable chiral photonic bandgaps in the NIR-II range, capable of modulating NIR-II luminescent quantum dots to produce NIR CPL. These CPMPs not only impart chirality to the quantum dots, but also act as carriers, minimizing luminescence quenching from external environments. The tunable chiral photonic bandgap in CPMPs enables the generation of NIR CPL with a high |glum| value of up to 0.81, facilitating the advanced application in covert optical anti-counterfeiting. This work offers a straightforward and viable strategy for the development of NIR CPL materials, broadening their use in invisible information encryption and optical anti-counterfeiting technologies.

Electronic Supplementary Material

Download File(s)
7182_ESM.pdf (3.3 MB)

References

[1]

Runowski, M.; Woźny, P.; Martín, I. R.; Soler-Carracedo, K.; Zheng, T.; Hemmerich, H.; Rivera-López, F.; Moszczyński, J.; Kulpiński, P.; Feldmann, S. Multimodal optically nonlinear nanoparticles exhibiting simultaneous higher harmonics generation and upconversion luminescence for anticounterfeiting and 8-bit optical coding. Adv. Funct. Mater. 2024, 34, 2307791.

[2]

Wang, Z. L.; Chu, J.; Shi, L.; Xing, T. Y.; Gao, X. Q.; Xu, Y. Chiral pearlescent cellulose nanocrystals films with broad-range tunable optical properties for anti-counterfeiting applications. Small 2024, 20, 2306810.

[3]

Jin, K. F.; Ji, X.; Yang, T. T.; Zhang, J. M.; Tian, W. G.; Yu, J.; Zhang, X.; Chen, Z. Y.; Zhang, J. Facile access to photo-switchable, dynamic-optical, multi-colored and solid-state materials from carbon dots and cellulose for photo-rewritable paper and advanced anti-counterfeiting. Chem. Eng. J. 2021, 406, 126794.

[4]

Yang, Z.; Xu, T. T.; Zhang, S. B.; Li, H.; Ji, Y. L.; Jia, X. D.; Li, J. L. Multifunctional N,S-doped and methionine functionalized carbon dots for on-off-on Fe3+ and ascorbic acid sensing, cell imaging, and fluorescent ink applying. Nano Res. 2023, 16, 5401–5411.

[5]

Lan, R. C.; Wang, Q.; Shen, C.; Huang, R.; Bao, J. Y.; Zhang, Z. P.; Zhang, L. Y.; Yang, H. Humidity-induced simultaneous visible and fluorescence photonic patterns enabled by integration of covalent bonds and ionic crosslinks. Adv. Funct. Mater. 2021, 31, 2106419.

[6]

Zhao, Y. J.; Yang, X. R.; Yang, L.; Xing, F. J.; Liu, C. H.; Di, Y. S.; Cao, G. Y.; Wei, S. B.; Yang, X. F.; Zhang, X. W. et al. Advanced optical information encryption enabled by polychromatic and stimuli-responsive luminescence of Sb-doped double perovskites. Adv. Sci. 2024, 11, 2308390.

[7]

Yang, X. R.; Sheng, Y. H.; Zhang, L. L.; Yang, L.; Xing, F. J.; Di, Y. S.; Liu, C. H.; Hu, F. R.; Yang, X. F.; Yang, G. F. et al. Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites. Nano Res. 2024, 17, 9971–9979.

[8]

Zhang, M. J.; Guo, Q.; Li, Z. Y.; Zhou, Y. J.; Zhao, S. S.; Tong, Z.; Wang, Y. X.; Li, G. G.; Jin, S.; Zhu, M. Z. et al. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging. Sci. Adv. 2023, 9, eadi9944.

[9]

Hsu, C.; Xu, Z. D.; Wang, X. G. Symmetry-breaking response of azo molecular glass microspheres to interfering circularly polarized light: From shape manipulation to 3D patterning. Adv. Funct. Mater. 2019, 29, 1806703.

[10]

Zhan, X. Q.; Xu, F. F.; Zhou, Z. H.; Yan, Y. L.; Yao, J. N.; Zhao, Y. S. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater. 2021, 33, 2104418.

[11]

Hiratani, T.; Hamad, W. Y.; MacLachlan, M. J. Transparent depolarizing organic and inorganic films for optics and sensors. Adv. Mater. 2017, 29, 1606083.

[12]

Han, H.; Lee, Y. J.; Kyhm, J.; Jeong, J. S.; Han, J. H.; Yang, M. K.; Lee, K. M.; Choi, Y.; Yoon, T. H.; Ju, H. et al. High-performance circularly polarized light-sensing near-infrared organic phototransistors for optoelectronic cryptographic primitives. Adv. Funct. Mater. 2020, 30, 2006236.

[13]

He, M. J.; Hsu, Y.I.; Uyama, H. High-performance bioinspired multi-responsive chiral cellulose nanocrystals-based flexible films for information encryption. Chem. Eng. J. 2024, 495, 153516.

[14]

MacKenzie, L. E.; Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 2021, 5, 109–124.

[15]

Wang, X. J.; Zhao, B.; Deng, J. P. Liquid crystals doped with chiral fluorescent polymer: Multi-color circularly polarized fluorescence and room-temperature phosphorescence with high dissymmetry factor and anti-counterfeiting application. Adv. Mater. 2023, 35, 2304405.

[16]

Wan, L.; Zhang, R.; Cho, E.; Li, H. X.; Coropceanu, V.; Brédas, J. L.; Gao, F. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends. Nat. Photon. 2023, 17, 649–655.

[17]

Liu, D.; Wang, W. J.; Alam, P.; Yang, Z.; Wu, K. W.; Zhu, L. X.; Xiong, Y.; Chang, S.; Liu, Y.; Wu, B. et al. Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate. Nat. Photon. 2024, 18, 1276–1284.

[18]

Willis, O. G.; Zinna, F.; Di Bari, L. NIR-circularly polarized luminescence from chiral complexes of lanthanides and d-metals. Angew. Chem., Int. Ed. 2023, 62, e202302358.

[19]

Lu, D.; Li, M. F.; Gao, X. Q.; Yu, X.; Wei, L. H.; Zhu, S. J.; Xu, Y. Cellulose nanocrystal films with NIR-II circularly polarized light for cancer detection applications. ACS Nano 2023, 17, 461–471.

[20]

Suo, K.; Lv, Y. W.; Yin, J. C.; Yang, Y.; Huang, X. Image dehazing combining polarization properties and deep learning. J. Opt. Soc. Am. A 2024, 41, 311–322.

[21]

Wu, R. Y.; Zhao, Y. Q.; Li, N.; Kong, S. G. Polarization image demosaicking using polarization channel difference prior. Opt. Express 2021, 29, 22066–22079.

[22]

Suzuki, M.; Doi, K.; Sakamoto, M.; Noda, K.; Sasaki, T.; Kawatsuki, N.; Ono, H. Near-infrared hyperspectral circular polarization imaging and object classification with machine learning. Opt. Lett. 2024, 49, 706–709.

[23]

Huang, J.; Jin, X.; Yang, X. F.; Zhao, T. H.; Xie, H. L.; Duan, P. F. Near-infrared circularly polarized luminescent physical unclonable functions. ACS Nano 2024, 18, 15888–15897.

[24]

Wang, Q.; Xu, H. R.; Qi, Z.; Mei, J.; Tian, H.; Qu, D. H. Dynamic near-infrared circularly polarized luminescence encoded by transient supramolecular chiral assemblies. Angew. Chem., Int. Ed. 2024, 63, e202407385.

[25]

Yang, X. F.; Jin, X.; Zheng, A. Y.; Duan, P. F. Dual band-edge enhancing overall performance of upconverted near-infrared circularly polarized luminescence for anticounterfeiting. ACS Nano 2023, 17, 2661–2668.

[26]

Maupin, C. L.; Parker, D.; Williams, J. A. G.; Riehl, J. P. Circularly polarized luminescence from chiral octadentate complexes of Yb(III) in the near-infrared. J. Am. Chem. Soc. 1998, 120, 10563–10564.

[27]

Míguez-Lago, S.; Mariz, I. F. A.; Medel, M. A.; Cuerva, J. M.; Maçôas, E.; Cruz, C. M.; Campaña, A. G. Highly contorted superhelicene hits near-infrared circularly polarized luminescence. Chem. Sci. 2022, 13, 10267–10272.

[28]

Zinna, F.; Arrico, L.; Di Bari, L. Near-infrared circularly polarized luminescence from chiral Yb(III)-diketonates. Chem. Commun. 2019, 55, 6607–6609.

[29]

Liang, N.; Cao, C.; Xie, Z. L.; Liu, J. X.; Feng, Y. S.; Yao, C. J. Advances in near-infrared circularly polarized luminescence with organometallic and small organic molecules. Mater. Today 2024, 75, 309–333.

[30]

Yang, X. F.; Jin, X.; Zhao, T. H.; Duan, P. F. Circularly polarized luminescence in chiral nematic liquid crystals: Generation and amplification. Mater. Chem. Front. 2021, 5, 4821–4832.

[31]

Yang, X. X.; Li, N.; Li, C.; Jin, Z. B.; Ma, Z. Z.; Gu, Z. G.; Zhang, J. Chiral liquid crystalline metal-organic framework thin films for highly circularly polarized luminescence. J. Am. Chem. Soc. 2024, 146, 16213–16221.

[32]

Zhang, C.; Li, S.; Dong, X. Y.; Zang, S.Q. Circularly polarized luminescence of agglomerate emitters. Aggregate 2021, 2, e48.

[33]

Zhang, Y. D.; Yu, S.; Han, B.; Zhou, Y. L.; Zhang, X. W.; Gao, X. Q.; Tang, Z. Y. Circularly polarized luminescence in chiral materials. Matter 2022, 5, 837–875.

[34]

Duan, C. L.; Cheng, Z.; Wang, B.; Zeng, J. S.; Xu, J.; Li, J. P.; Gao, W. H.; Chen, K. F. Chiral photonic liquid crystal films derived from cellulose nanocrystals. Small 2021, 17, 2007306.

[35]

Guo, D. Y.; Chen, C. W.; Li, C. C.; Jau, H. C.; Lin, K. H.; Feng, T. M.; Wang, C. T.; Bunning, T. J.; Khoo, I. C.; Lin, T. H. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction. Nat. Mater. 2020, 19, 94–101.

[36]

Anusuyadevi, P. R.; Shanker, R.; Cui, Y. X.; Riazanova, A. V.; Järn, M.; Jonsson, M. P.; Svagan, A. J. Photoresponsive and polarization-sensitive structural colors from cellulose/liquid crystal nanophotonic structures. Adv. Mater. 2021, 33, 2101519.

[37]

Bao, J. Y.; Wang, Z. Z.; Shen, C.; Huang, R.; Song, C. J.; Li, Z. Z.; Hu, W.; Lan, R. C.; Zhang, L. Y.; Yang, H. Freestanding helical nanostructured chiro-photonic crystal film and anticounterfeiting label enabled by a cholesterol-grafted light-driven molecular motor. Small Methods 2022, 6, 2200269.

[38]

Lv, J. W.; Ding, D. F.; Yang, X. K.; Hou, K.; Miao, X.; Wang, D. W.; Kou, B. C.; Huang, L.; Tang, Z. Y. Biomimetic chiral photonic crystals. Angew. Chem., Int. Ed. 2019, 58, 7783–7787.

[39]

Shi, Y. H.; Han, J. L.; Li, C. X.; Zhao, T. H.; Jin, X.; Duan, P. F. Recyclable soft photonic crystal film with overall improved circularly polarized luminescence. Nat. Commun. 2023, 14, 6123.

[40]

Li, W.; Xu, M. C.; Ma, C. H.; Liu, Y. S.; Zhou, J.; Chen, Z. J.; Wang, Y. G.; Yu, H. P.; Li, J.; Liu, S. X. Tunable upconverted circularly polarized luminescence in cellulose nanocrystal based chiral photonic films. ACS Appl. Mater. Interfaces 2019, 11, 23512–23519.

[41]
Jia, S. Z.; Yang, B. B.; Du, J.; Zhang, J. Y.; Xie, Y. J.; Yu, L. Y.; Zhang, Y.; Tao, T. T.; Tang, W. W.; Gong, J. B. Highly flexible and reversible stimuli-responsive photonic crystal film in anti-counterfeit, detector, and coating. Small Methods 2024 , 2400447, in press, DOI: 10.1002/smtd.202400447.
[42]

Boott, C. E.; Tran, A.; Hamad, W. Y.; MacLachlan, M. J. Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem., Int. Ed. 2020, 59, 226–231.

[43]

Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.

Nano Research
Cite this article:
Huang J, Yang X, Jin X, et al. Chiral photonic micro-particles enabling circularly polarized luminescence for NIR-II optical anti-counterfeiting. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907182
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return