One-dimensional metal halide perovskite (MHP) nanowires (NWs) have recently emerged as highly promising optoelectronic materials due to their high aspect ratio, anisotropic quantum confinement, nonlinear optical response, unique mechanical flexibility, in addition to the well-known advantageous properties inherent to MHPs. In this review, we discuss the recent advancements in the synthesis, characterization, and properties of MHP NWs, particularly with their diameters below the Bohr radius (referred as ultrathin MHP NWs). Key future directions are highlighted, including refining synthesis methods for atomic-level control, understanding the growth mechanisms, improving stability through surface passivation, exploring lead-free alternatives to mitigate toxicity concerns, and achieving novel and unique properties. These advancements will enable ultrathin MHP NWs to play a pivotal role in advanced applications in various optical, optoelectronic, and photonic technologies.
Dey, A.; Ye, J. Z.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z. Y.; Yin, J.; Wang, Y. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 2021, 15, 10775–10981.
Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.
Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.
Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem. 2015, 127, 15644–15648.
Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.
Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083.
De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.
Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.
Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93.
Y. H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y. H.; Xu, H. X.; Nagane, S.; Wexler, R. B.; Kim, D. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 2021, 15, 148–155.
Ye, J. Z.; Byranvand, M. M.; Martínez, C. O.; Hoye, R. L. Z.; Saliba, M.; Polavarapu, L. Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward efficient LEDs and solar cells. Angew. Chem. 2021, 133, 21804–21828.
Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72–77.
Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.
Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
Yang, H. J.; Zhang, Y.; Hills-Kimball, K.; Zhou, Y. Y.; Chen, O. Building bridges between halide perovskite nanocrystals and thin-film solar cells. Sustainable Energy Fuels 2018, 2, 2381–2397.
Wang, J. Y.; Cai, T.; Chen, O. Cesium copper halide perovskite nanocrystal-based photon-managing devices for enhanced ultraviolet photon harvesting. Nano Lett. 2023, 23, 4367–4374.
Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.
R.; Gold-Parker, A.; Proppe, A. H.; Munir, R.; Yang, Z. Y.; Kelley, S. O.; Amassian, A.; Toney, M. F.; Sargent, E. H. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater. 2018, 17, 900–907.
Zhou, C. K.; Lin, H. R.; He, Q. Q.; Xu, L. J.; Worku, M.; Chaaban, M.; Lee, S.; Shi, X. Q.; Du, M. H.; Ma, B. W. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R: Rep. 2019, 137, 38–65.
Otero-Martínez, C.; Ye, J. Z.; Sung, J.; Pastoriza-Santos, I.; Pérez-Juste, J.; Xia, Z. G.; Rao, A.; Hoye, R. L.; Polavarapu, L. Colloidal metal-halide perovskite nanoplatelets: Thickness-controlled synthesis, properties, and application in light-emitting diodes. Adv. Mater. 2022, 34, 2107105.
Bera, S.; Shyamal, S.; Pradhan, N. Chemically spiraling CsPbBr3 perovskite nanorods. J. Am. Chem. Soc. 2021, 143, 14895–14906.
Dong, Y. T.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018, 18, 3716–3722.
Liu, Z. Y.; Yang, H. J.; Wang, J. Y.; Yuan, Y. C.; Hills-Kimball, K.; Cai, T.; Wang, P.; Tang, A. W.; Chen, O. Synthesis of lead-free Cs2AgBiX6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Lett. 2021, 21, 1620–1627.
Liu, Z. Y.; Sun, Y. Y.; Cai, T.; Yang, H. J.; Zhao, J. X.; Yin, T.; Hao, C. Q.; Chen, M. J.; Shi, W. W.; Li, X. X. et al. Two-dimensional Cs2AgIn x Bi1– x Cl6 alloyed double perovskite nanoplatelets for solution-processed light-emitting diodes. Adv. Mater. 2023, 35, 2211235.
Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.
Schlaus, A. P.; Spencer, M. S.; Miyata, K.; Liu, F.; Wang, X. X.; Datta, I.; Lipson, M.; Pan, A. L.; Zhu, X. Y. How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun. 2019, 10, 265.
Shoaib, M.; Zhang, X. H.; Wang, X. X.; Zhou, H.; Xu, T.; Wang, X.; Hu, X. L.; Liu, H. W.; Fan, X. P.; Zheng, W. H. et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 2017, 139, 15592–15595.
Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.
Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.
Zhang, D. D.; Yu, Y.; Bekenstein, Y.; Wong, A. B.; Alivisatos, A. P.; Yang, P. D. Ultrathin colloidal cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2016, 138, 13155–13158.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Zhu, H.; Šverko, T.; Zhang, J. Y.; Berkinsky, D. B.; Sun, W. W.; Krajewska, C. J.; Bawendi, M. G. One-dimensional highly-confined CsPbBr3 nanorods with enhanced stability: Synthesis and spectroscopy. Nano Lett. 2022, 22, 8355–8362.
Im, J. H.; Luo, J. S.; Franckevičius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Park, N. G. Nanowire perovskite solar cell. Nano Lett. 2015, 15, 2120–2126.
Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.
Zhang, D. Q.; Zhang, Q. P.; Zhu, Y. Y.; Poddar, S.; Zhang, Y. T.; Gu, L. L.; Zeng, H. B.; Fan, Z. Y. Metal halide perovskite nanowires: Synthesis, integration, properties, and applications in optoelectronics. Adv. Energy Mater. 2023, 13, 2201735.
Liu, X. H.; Yu, D. J.; Song, X. F.; Zeng, H. B. Metal halide perovskites: Synthesis, ion migration, and application in field-effect transistors. Small 2018, 14, 1801460.
Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.
Bi, C. H.; Hu, J. C.; Yao, Z. W.; Lu, Y.; Binks, D.; Sui, M.; Tian, J. J. Self-assembled perovskite nanowire clusters for high luminance red light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005990.
Zhang, Q. P.; Zhang, D. Q.; Gu, L. L.; Tsui, K. H.; Poddar, S.; Fu, Y.; Shu, L.; Fan, Z. Y. Three-dimensional perovskite nanophotonic wire array-based light-emitting diodes with significantly improved efficiency and stability. ACS Nano 2020, 14, 1577–1585.
Feng, J. G.; Gong, C.; Gao, H. F.; Wen, W.; Gong, Y. J.; Jiang, X. Y.; Zhang, B.; Wu, Y. C.; Wu, Y. S.; Fu, H. B. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 2018, 1, 404–410.
Wang, H.; Kim, D. H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236.
Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282.
Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713–9721.
Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.
Koenigsmann, C.; Santulli, A. C.; Gong, K. P.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795.
Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.
M.; Di Stasio, F.; Dang, Z. Y.; Canale, C.; Khan, A. H.; Shamsi, J.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chem. Mater. 2016, 28, 6450–6454.
Di Stasio, F.; Imran, M.; Akkerman, Q. A.; Prato, M.; Manna, L.; Krahne, R. Reversible concentration-dependent photoluminescence quenching and change of emission color in CsPbBr3 nanowires and nanoplatelets. J. Phys. Chem. Lett. 2017, 8, 2725–2729.
Wang, Y. K.; Liu, X. Y.; He, Q. Q.; Chen, G. Y.; Xu, D. D.; Chen, X. D.; Zhao, W. B.; Bao, J. C.; Xu, X. X.; Liu, J. L. et al. Reversible transformation between CsPbBr3 perovskite nanowires and nanorods with polarized optoelectronic properties. Adv. Funct. Mater. 2021, 31, 2011251.
Ko, S. H.; Pan, H.; Grigoropoulos, C. P.; Luscombe, C. K.; Fréchet, J. M. J.; Poulikakos, D. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 2007, 18, 345202.
Yang, D.; Yang, R. X.; Priya, S.; Liu, S. Z. Recent advances in flexible perovskite solar cells: Fabrication and applications. Angew. Chem., Int. Ed. 2019, 58, 4466–4483.
You, J. B.; Hong, Z. R.; Yang, Y.; Chen, Q.; Cai, M.; Song, T. B.; Chen, C. C.; Lu, S. R.; Liu, Y. S.; Zhou, H. P. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680.
Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.
Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015, 2, 1500194.
Kulkarni, S. A.; Mhaisalkar, S. G.; Mathews, N.; Boix, P. P. Perovskite nanoparticles: Synthesis, properties, and novel applications in photovoltaics and LEDs. Small Methods 2019, 3, 1800231.
Amgar, D.; Stern, A.; Rotem, D.; Porath, D.; Etgar, L. Tunable length and optical properties of CsPbX3 (X = Cl, Br, I) nanowires with a few unit cells. Nano Lett. 2017, 17, 1007–1013.
Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; García Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015, 15, 6521–6527.
Yuan, Z.; Shu, Y.; Tian, Y.; Xin, Y.; Ma, B. W. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun. 2015, 51, 16385–16388.
Kostopoulou, A.; Sygletou, M.; Brintakis, K.; Lappas, A.; Stratakis, E. Low-temperature benchtop-synthesis of all-inorganic perovskite nanowires. Nanoscale 2017, 9, 18202–18207.
He, L. Z.; Pan, S.; Lin, Z. Q.; Peng, J. Rapid route to polar solvent-directed growth of perovskite nanowires. ACS Appl. Nano Mater. 2019, 2, 7910–7915.
Ahmed, G. H.; Yin, J.; Bose, R.; Sinatra, L.; Alarousu, E.; Yengel, E.; AlYami, N. M.; Saidaminov, M. I.; Zhang, Y. H.; Hedhili, M. N. et al. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals. Chem. Mater. 2017, 29, 4393–4400.
Hu, J. C.; Bi, C. H.; Zhang, X. T.; Lu, Y.; Zhou, W. C.; Zheng, Z. L.; Tang, Y.; Lu, F.; Yao, Z. W.; Tian, B. H. et al. Yellow-light emitted single halide CsPbI3 nanowire. Appl. Mater. Today. 2022, 29, 101592.
Huang, H. W.; Liu, M.; Li, J.; Luo, L. H.; Zhao, J. T.; Luo, Z. L.; Wang, X. P.; Ye, Z. Z.; He, H. P.; Zeng, J. Atomically thin cesium lead bromide perovskite quantum wires with high luminescence. Nanoscale 2017, 9, 104–108.
Yang, H. J.; Cai, T.; Dube, L.; Chen, O. Synthesis of double perovskite and quadruple perovskite nanocrystals through post-synthetic transformation reactions. Chem. Sci. 2022, 13, 4874–4883.
Paul, S.; Acharya, S. Postsynthesis transformation of halide perovskite nanocrystals. ACS Energy Lett. 2022, 7, 2136–2155.
Dube, L.; Saghy, P.; Chen, O. Post-synthetic doping and ligand engineering of Cs2AgInCl6 double perovskite nanocrystals. J. Phys. Chem. C 2023, 127, 21849–21859.
Debnath, G. H.; Georgieva, Z. N.; Bloom, B. P.; Tan, S. S.; Waldeck, D. H. Using post-synthetic ligand modification to imprint chirality onto the electronic states of cesium lead bromide (CsPbBr3) perovskite nanoparticles. Nanoscale 2021, 13, 15248–15256.
Wang, B.; Zhang, C. Y.; Huang, S. Q.; Li, Z. C.; Kong, L.; Jin, L.; Wang, J. H.; Wu, K. F.; Li, L. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Appl. Mater. Interfaces. 2018, 10, 23303–23310.
Hills-Kimball, K.; Pérez, M. J.; Nagaoka, Y.; Cai, T.; Yang, H. J.; Davis, A. H.; Zheng, W. W.; Chen, O. Ligand engineering for Mn2+ doping control in CsPbCl3 perovskite nanocrystals via a quasi-solid-solid cation exchange reaction. Chem. Mater. 2020, 32, 2489–2500.
Yang, H. J.; Cai, T.; Liu, E. X.; Hills-Kimball, K.; Gao, J. B.; Chen, O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.
Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.
Wu, L. Z.; Hu, H. C.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q. X.; Yang, D.; Liu, Q. P.; Zhao, Y.; Sun, B. Q. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 2017, 17, 5799–5804.
Li, P. L.; Yang, D.; Tan, Y. S.; Cao, M. H.; Zhong, Q. X.; Chen, M.; Hu, H. C.; Sun, B. Q.; Xu, Y.; Zhang, Q. Consecutive interfacial transformation of cesium lead halide nanocubes to ultrathin nanowires with improved stability. ACS Appl. Mater. Interfaces. 2019, 11, 3351–3359.
Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Müller-Buschbaum, P.; Stranks, S. D.; Urban, A. S. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 2018, 18, 5231–5238.
Yang, H. J.; Cai, T.; Dube, L.; Hills-Kimball, K.; Chen, O. Synthesis of ultrathin perovskite nanowires via a postsynthetic transformation reaction of zero-dimensional perovskite nanocrystals. Cryst. Growth Des. 2021, 21, 1924–1930.
Huczko, A. Template-based synthesis of nanomaterials. Appl. Phys. A 2000, 70, 365–376.
Wu, Y. Y.; Livneh, T.; Zhang, Y. X.; Cheng, G. S.; Wang, J. F.; Tang, J.; Moskovits, M.; Stucky, G. D. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett. 2004, 4, 2337–2342.
Hurst, S. J.; Payne, E. K.; Qin, L. D.; Mirkin, C. A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem., Int. Ed. 2006, 45, 2672–2692.
Cao, G. Z.; Liu, D. W. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interface Sci. 2008, 136, 45–64.
Liu, Y. D.; Goebl, J.; Yin, Y. D. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 2013, 42, 2610–2653.
Luo, Z. S.; Li, Q.; Zhang, L. M.; Wu, X. T.; Tan, L.; Zou, C.; Liu, Y. J.; Quan, Z. W. 0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: Colloidal syntheses and optical properties. Small 2020, 16, 1905226.
Ashley, M. J.; O’Brien, M. N.; Hedderick, K. R.; Mason, J. A.; Ross, M. B.; Mirkin, C. A. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 2016, 138, 10096–10099.
Waleed, A.; Tavakoli, M. M.; Gu, L. L.; Wang, Z. Y.; Zhang, D. Q.; Manikandan, A.; Zhang, Q. P.; Zhang, R. J.; Chueh, Y. L.; Fan, Z. Y. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett. 2017, 17, 523–530.
Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 2016, 16, 5866–5874.
Zhang, L. H.; Sun, Q. S.; Xu, Y. K.; Han, L. L.; Wang, Q.; Yu, Y. C.; Jin, Z. W.; Yang, S. K.; Ci, Z. Self-assembled template-confined growth of ultrathin CsPbBr3 nanowires. Appl. Mater. Today 2020, 18, 100449.
Fu, Y.; Poddar, S.; Ren, B. T.; Xie, Y.; Zhang, Q. P.; Zhang, D. Q.; Cao, B.; Tang, Y. Q.; Ding, Y. C.; Qiu, X. et al. Strongly quantum-confined perovskite nanowire arrays for color-tunable blue-light-emitting diodes. ACS Nano 2022, 16, 8388–8398.
Gao, M. Y.; Park, Y.; Jin, J. B.; Chen, P. C.; Devyldere, H.; Yang, Y.; Song, C. Y.; Lin, Z. N.; Zhao, Q. C.; Siron, M. et al. Direct observation of transient structural dynamics of atomically thin halide perovskite nanowires. J. Am. Chem. Soc. 2023, 145, 4800–4807.
Puppin, M.; Polishchuk, S.; Colonna, N.; Crepaldi, A.; Dirin, D. N.; Nazarenko, O.; De Gennaro, R.; Gatti, G.; Roth, S.; Barillot, T. et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys. Rev. Lett. 2020, 124, 206402.
Motti, S. G.; Meggiolaro, D.; Martani, S.; Sorrentino, R.; Barker, A. J.; De Angelis, F.; Petrozza, A. Defect activity in lead halide perovskites. Adv. Mater. 2019, 31, 1901183.
W.; Lin, J.; Li, C.; Hu, S. M.; Huang, Y.; Yu, C.; Wen, Z. K.; Liu, Z. Y.; Fang, Y.; Tang, C. C. Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors. Nanoscale 2018, 10, 21451–21458.
Chen, M.; Zou, Y. T.; Wu, L. Z.; Pan, Q.; Yang, D.; Hu, H. C.; Tan, Y. S.; Zhong, Q. X.; Xu, Y.; Liu, H. Y. et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire. Adv. Funct. Mater. 2017, 27, 1701121.
Zhai, W.; Lin, J.; Li, Q. L.; Zheng, K.; Huang, Y.; Yao, Y. Z.; He, X.; Li, L. L.; Yu, C.; Liu, C. et al. Solvothermal synthesis of ultrathin cesium lead halide perovskite nanoplatelets with tunable lateral sizes and their reversible transformation into Cs4PbBr6 nanocrystals. Chem. Mater. 2018, 30, 3714–3721.
Yu, M. M.; Zhang, D.; Xu, Y. B.; Lin, J.; Yu, C.; Fang, Y.; Liu, Z. Y.; Guo, Z. L.; Tang, C. C.; Huang, Y. Surface ligand engineering of CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Colloid Interface Sci. 2022, 608, 2367–2376.
Lai, J. P.; Niu, W. X.; Luque, R.; Xu, G. B. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10, 240–267.
L. P.; Hu, Y. L.; Pelligra, C.; Chen, C. H.; Jin, L.; Huang, H.; Sithambaram, S.; Aindow, M.; Joesten, R.; Suib, S. L. ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater. 2009, 21, 2875–2885.
Sun, C. W.; Li, H.; Zhang, H. R.; Wang, Z. X.; Chen, L. Q. Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology 2005, 16, 1454–1463.
Q. A.; Nguyen, T. P. T.; Boehme, S. C.; Montanarella, F.; Dirin, D. N.; Wechsler, P.; Beiglböck, F.; Rainò, G.; Erni, R.; Katan, C. et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 2022, 377, 1406–1412.
Gao, Q. J.; Qi, J. H.; Chen, K.; Xia, M. H.; Hu, Y.; Mei, A. Y.; Han, H. W. Halide perovskite crystallization processes and methods in nanocrystals, single crystals, and thin films. Adv. Mater. 2022, 34, 2200720.
Qiao, Z.; Wang, X.; Zhai, Y. F.; Yu, R. Z.; Fang, Z.; Chen, G. In situ real-time observation of formation and self-assembly of perovskite nanocrystals at high temperature. Nano Lett. 2023, 23, 10788–10795.
Tang, X. S.; Zu, Z. Q.; Shao, H. B.; Hu, W.; Zhou, M.; Deng, M.; Chen, W. W.; Zang, Z. G.; Zhu, T.; Xue, J. M. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale 2016, 8, 15158–15161.
LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.
Tong, Y.; Bohn, B. J.; Bladt, E.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. From precursor powders to CsPbX3 perovskite nanowires: One-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem., Int. Ed. 2017, 56, 13887–13892.
Liu, J. K.; Song, K. P.; Shin, Y.; Liu, X.; Chen, J.; Yao, K. X.; Pan, J.; Yang, C.; Yin, J.; Xu, L. J. et al. Light-induced self-assembly of cubic CsPbBr3 perovskite nanocrystals into nanowires. Chem. Mater. 2019, 31, 6642–6649.
Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.
Liu, L. L.; Kluherz, K.; Jin, B.; Gamelin, D. R.; De Yoreo, J. J.; Sushko, M. L. Oriented assembly of lead halide perovskite nanocrystals. Nano Lett. 2024, 24, 3299–3306.
Zhang, Q.; Liu, S. J.; Yu, S. H. Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Mater. Chem. 2009, 19, 191–207.
Lv, W. Q.; He, W. D.; Wang, X. N.; Niu, Y. H.; Cao, H. Q.; Dickerson, J. H.; Wang, Z. G. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: A review. Nanoscale 2014, 6, 2531–2547.
Morris-Cohen, A. J.; Vasilenko, V.; Amin, V. A.; Reuter, M. G.; Weiss, E. A. Model for adsorption of ligands to colloidal quantum dots with concentration-dependent surface structure. ACS Nano 2012, 6, 557–565.
Kazes, M.; Udayabhaskararao, T.; Dey, S.; Oron, D. Effect of surface ligands in perovskite nanocrystals: Extending in and reaching out. Acc. Chem. Res. 2021, 54, 1409–1418.
A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954.
Luo, B. B.; Pu, Y. C.; Lindley, S. A.; Yang, Y.; Lu, L. Q.; Li, Y.; Li, X. M.; Zhang, J. Z. Organolead halide perovskite nanocrystals: Branched capping ligands control crystal size and stability. Angew. Chem., Int. Ed. 2016, 55, 8864–8868.
Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.
Dang, Z. Y.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124–2132.
Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.
Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 2008, 321, 506–510.
Yu, Y.; Cui, F.; Sun, J. W.; Yang, P. D. Atomic structure of ultrathin gold nanowires. Nano Lett. 2016, 16, 3078–3084.
Straus, D. B.; Guo, S.; Cava, R. J. Kinetically stable single crystals of perovskite-phase CsPbI3. J. Am. Chem. Soc. 2019, 141, 11435–11439.
A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.
Pham, T.; Oh, S.; Stetz, P.; Onishi, S.; Kisielowski, C.; Cohen, M. L.; Zettl, A. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 2018, 361, 263–266.
Holder, C. F.; Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 2019, 13, 7359–7365.
Misra, S.; Liu, N.; Nelson, J.; Hong, S. S.; Cui, Y.; Toney, M. F. In situ X-ray diffraction studies of (de) lithiation mechanism in silicon nanowire anodes. ACS Nano 2012, 6, 5465–5473.
Zhao, J. T.; Liu, M.; Fang, L.; Jiang, S. L.; Zhou, J. T.; Ding, H. Y.; Huang, H. W.; Wen, W.; Luo, Z. L.; Zhang, Q. et al. Great disparity in photoluminesence quantum yields of colloidal CsPbBr3 nanocrystals with varied shape: The effect of crystal lattice strain. J. Phys. Chem. Lett. 2017, 8, 3115–3121.
Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.
Zhou, G. M.; Xu, L.; Hu, G. W.; Mai, L.; Cui, Y. Nanowires for electrochemical energy storage. Chem. Rev. 2019, 119, 11042–11109.
Sun, Y. G. Silver nanowires-unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642.
Kikhney, A. G.; Svergun, D. I. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 2015, 589, 2570–2577.
Teunis, M. B.; Jana, A.; Dutta, P.; Johnson, M. A.; Mandal, M.; Muhoberac, B. B.; Sardar, R. Mesoscale growth and assembly of bright luminescent organolead halide perovskite quantum wires. Chem. Mater. 2016, 28, 5043–5054.
Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z. F.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J. et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 2013, 13, 2722–2727.
Zhang, D. Q.; Gu, L. L.; Zhang, Q. P.; Lin, Y. J.; Lien, D. H.; Kam, M.; Poddar, S.; Garnett, E. C.; Javey, A.; Fan, Z. Y. Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays. Nano Lett. 2019, 19, 2850–2857.
Zheng, X. P.; Hou, Y.; Sun, H. T.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M. Reducing defects in halide perovskite nanocrystals for light-emitting applications. J. Phys. Chem. Lett. 2019, 10, 2629–2640.
Peng, Z. X.; Yang, D. D.; Yin, B. Z.; Guo, X.; Li, S.; Zhan, Q. Q.; Xiao, X. D.; Liu, X. F.; Xia, Z. G.; Yang, Z. M. et al. Self-assembled ultrafine CsPbBr3 perovskite nanowires for polarized light detection. Sci. China Mater 2021, 64, 2261–2271.
Stern, A.; Aharon, S.; Binyamin, T.; Karmi, A.; Rotem, D.; Etgar, L.; Porath, D. Electrical characterization of individual cesium lead halide perovskite nanowires using conductive AFM. Adv. Mater. 2020, 32, 1907812.
Aftab, S.; Kabir, F.; Mukhtar, M.; Hussain, I.; Nazir, G.; Aslam, M.; Hegazy, H. H.; Yewale, M. A. Perovskite quantum wires: A review of their exceptional optoelectronic properties and diverse applications in revolutionary technologies. Nano Energy 2024, 129, 109995.
Zhang, D. Q.; Zhu, Y. D.; Zhang, Q. P.; Ren, B. T.; Cao, B.; Li, Q. Z.; Poddar, S.; Zhou, Y.; Qiu, X.; He, Z. B. et al. Vertical heterogeneous integration of metal halide perovskite quantum-wires/nanowires for flexible narrowband photodetectors. Nano Lett. 2022, 22, 3062–3070.
Gloos, K.; Koppinen, P. J.; Pekola, J. P. Properties of native ultrathin aluminium oxide tunnel barriers. J. Phys.: Condens. Matter 2003, 15, 1733–1746.
Pollack, S. R.; Morris, C. F. Electron tunneling through asymmetric films of thermally grown Al2O3. J. Appl. Phys. 1964, 35, 1503–1512.
Nakayama, Y.; Pauzauskie, P. J.; Radenovic, A.; Onorato, R. M.; Saykally, R. J.; Liphardt, J.; Yang, P. D. Tunable nanowire nonlinear optical probe. Nature 2007, 447, 1098–1101.
Zhou, N. J.; Bekenstein, Y.; Eisler, C. N.; Zhang, D. D.; Schwartzberg, A. M.; Yang, P. D.; Alivisatos, A. P.; Lewis, J. A. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 2019, 5, eaav8141.
Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.
Lin, C. H.; Kang, C. Y.; Wu, T. Z.; Tsai, C. L.; Sher, C. W.; Guan, X. W.; Lee, P. T.; Wu, T.; Ho, C. H.; Kuo, H. C. et al. Giant optical anisotropy of perovskite nanowire array films. Adv. Funct. Mater. 2020, 30, 1909275.
Shi, S.; Sun, L. D.; Xue, Y. X.; Dong, H.; Wu, K.; Guo, S. C.; Wu, B. T.; Yan, C. H. Scalable direct writing of lanthanide-doped KMnF3 perovskite nanowires into aligned arrays with polarized up-conversion emission. Nano Lett. 2018, 18, 2964–2969.
Wang, J. X.; Zhang, Y. Z.; Chen, J.; Wei, Y.; Yu, D. J.; Liang, L. M.; Liu, Y.; Wu, Y.; Shen, W. L.; Li, X. M. et al. Strong polarized photoluminescence CsPbBr3 nanowire composite films for UV spectral conversion polarization photodetector enhancement. ACS Appl. Mater. Interfaces. 2021, 13, 36147–36156.
Pan, A. Z.; Jurow, M. J.; Wu, Y. S.; Jia, M. J.; Zheng, F. Y.; Zhang, Y. F.; He, L.; Liu, Y. Highly stable luminous “snakes” from CsPbX3 perovskite nanocrystals anchored on amine-coated silica nanowires. ACS Appl. Nano Mater. 2019, 2, 258–266.
Jiang, Y.; Liao, J. F.; Xu, Y. F.; Chen, H. Y.; Wang, X. D.; Kuang, D. B. Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction. J. Mater. Chem. A 2019, 7, 13762–13769.
Zhang, J. Y.; Jiao, B.; Dai, J. F.; Wu, D. M.; Wu, Z. X.; Bian, L. F.; Zhao, Y. K.; Yang, W. X.; Jiang, M.; Lu, S. L. Enhance the responsivity and response speed of self-powered ultraviolet photodetector by GaN/CsPbBr3 core–shell nanowire heterojunction and hydrogel. Nano Energy 2022, 100, 107437.
Lee, H. Y.; Kim, S. Nanowires for 2D material-based photonic and optoelectronic devices. Nanophotonics 2022, 11, 2571–2582.
Zhang, Y.; Yang, H. J.; Chen, M.; Padture, N. P.; Chen, O.; Zhou, Y. Y. Fusing nanowires into thin films: Fabrication of graded-heterojunction perovskite solar cells with enhanced performance. Adv. Energy Mater. 2019, 9, 1900243.
Gökbulut, B.; Topcu, G.; Demir, M. M.; Inci, M. N. Plasmon-induced spectral tunability of perovskite nanowires. Opt. Mater. 2021, 122, 111702.
Rong, Y. G.; Hu, Y.; Mei, A. Y.; Tan, H. R.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. W. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235.
Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.
Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918.
Wang, T. Y.; Deng, W. Q.; Cao, J. P.; Yan, F. Recent progress on heterojunction engineering in perovskite solar cells. Adv. Energy Mater. 2023, 13, 2201436.
Wu, X.; Li, B.; Zhu, Z. L.; Chueh, C. C.; Jen, A. K. Y. Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 2021, 50, 13090–13128.
Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.
Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.
Zhou, Y. Y.; Sternlicht, H.; Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 2019, 3, 641–661.
Timoshenko, J.; Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2021, 121, 882–961.
Weidman, M. C.; Smilgies, D. M.; Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 2016, 15, 775–781.
Li, T.; Senesi, A. J.; Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016, 116, 11128–11180.
Akbali, B.; Topcu, G.; Guner, T.; Ozcan, M.; Demir, M. M.; Sahin, H. CsPbBr3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation. Phys. Rev. Mater. 2018, 2, 034601.
Hills-Kimball, K.; Yang, H. J.; Cai, T.; Wang, J. Y.; Chen, O. Recent advances in ligand design and engineering in lead halide perovskite nanocrystals. Adv. Sci. 2021, 8, 2100214.
Schmidt, J.; Merkle, A.; Brendel, R.; Hoex, B.; van de Sanden, M. C. M.; Kessels, W. M. M. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Prog. Photovolt.: Res. Appl. 2008, 16, 461–466.
Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L. G.; Boehme, S. C.; Aebli, M.; Affolter, J.; Kaul, C. J.; Schrenker, N. J.; Bals, S. et al. Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature 2024, 626, 542–548.
Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417–1420.
Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261.
López-Fernández, I.; Valli, D.; Wang, C. Y.; Samanta, S.; Okamoto, T.; Huang, Y. T.; Sun, K.; Liu, Y.; Chirvony, V. S.; Patra, A. et al. Lead-free halide perovskite materials and optoelectronic devices: Progress and prospective. Adv. Funct. Mater. 2024, 34, 2307896.
Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.
Cai, T.; Dube, L.; Saghy, P.; Yang, H. J.; Chen, O. Progress in all-inorganic heterometallic halide layered double perovskites. Trends Chem. 2023, 5, 29–44.
Cai, T.; Shi, W. W.; Hwang, S.; Kobbekaduwa, K.; Nagaoka, Y.; Yang, H. J.; Hills-Kimball, K.; Zhu, H.; Wang, J. Y.; Wang, Z. G. et al. Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals. J. Am. Chem. Soc. 2020, 142, 11927–11936.
Liu, S. P.; Yang, B.; Chen, J. S.; Wei, D. H.; Zheng, D. Y.; Kong, Q. K.; Deng, W. Q.; Han, K. L. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals. Angew. Chem. 2020, 132, 22109–22113.
Han, P. G.; Luo, C.; Yang, S. Q.; Yang, Y.; Deng, W. Q.; Han, K. L. All-inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from < 2% to 90%. Angew. Chem. 2020, 132, 12809–12813.
Shi, W. W.; Cai, T.; Wang, Z. G.; Chen, O. The effects of monovalent metal cations on the crystal and electronic structures of Cs2MBiCl6 (M = Ag, Cu, Na, K, Rb, and Cs) perovskites. J. Chem. Phys. 2020, 153, 141101.
Saghy, P.; Brown, A. M.; Chu, C.; Dube, L. C.; Zheng, W. W.; Robinson, J. R.; Chen, O. Lanthanide double perovskite nanocrystals with emissions covering the UV-C to NIR spectral range. Adv. Opt. Mater. 2023, 11, 2300277.
Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.
Sun, L. H.; Dong, B.; Sun, J.; Wang, Y. M.; Wang, Y. Q.; Hu, S. T.; Zhou, B. S.; Bai, X.; Xu, L.; Zhou, D. L. et al. Efficient and stable multicolor emissions of the coumarin-modified Cs3LnCl6 lead-free perovskite nanocrystals and LED application. Adv. Mater. 2024, 36, 2310065.
Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 12471–12475.
Hao, L. N.; Liu, K.; Cheng, S.; Wang, Y.; Xu, Y. J.; Qian, H. S. KMnF3 nanowires and nanoparticles: Selected synthesis, characterization and magnetic properties. Mater. Lett. 2017, 196, 145–148.
Gao, Z.; Zhou, H.; Dong, K. L.; Wang, C.; Wei, J. Y.; Li, Z.; Li, J. S.; Liu, Y. J.; Zhao, J.; Fang, G. J. Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-Micro Lett. 2022, 14, 215.
Guo, C. F.; Ren, Z. F. Flexible transparent conductors based on metal nanowire networks. Mater. Today 2015, 18, 143–154.
Wang, S. L.; Shan, Z. W.; Huang, H. The mechanical properties of nanowires. Adv. Sci. 2017, 4, 1600332.
Park, H. S.; Cai, W.; Espinosa, H. D.; Huang, H. C. Mechanics of crystalline nanowires. MRS Bull. 2009, 34, 178–183.
Foster, M. A.; Turner, A. C.; Lipson, M.; Gaeta, A. L. Nonlinear optics in photonic nanowires. Opt. Express 2008, 16, 1300–1320.
Liu, J. W.; Xu, J.; Liang, H. W.; Wang, K.; Yu, S. H. Macroscale ordered ultrathin telluride nanowire films, and tellurium/telluride hetero-nanowire films. Angew. Chem., Int. Ed. 2012, 51, 7420–7425.
Li, S. Q.; Lv, C. J.; Luo, H. Y.; Cui, L. H.; Jia, Z. X.; Li, J. F.; Qin, W. P.; Qin, G. S. Ultrathin gold nanowires as broadband saturable absorbers for ultrashort pulsed lasers. Laser Phys. Lett. 2022, 19, 095102.
Jacobsohn, M.; Banin, U. Size dependence of second harmonic generation in CdSe nanocrystal quantum dots. J. Phys. Chem. B 2000, 104, 1–5.
Evans, T. J. S.; Schlaus, A.; Fu, Y. P.; Zhong, X. J.; Atallah, T. L.; Spencer, M. S.; Brus, L. E.; Jin, S.; Zhu, X. Y. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 2018, 6, 1700982.
Kong, Q.; Lee, W.; Lai, M. L.; Bischak, C. G.; Gao, G. P.; Wong, A. B.; Lei, T.; Yu, Y.; Wang, L. W.; Ginsberg, N. S. et al. Phase-transition-induced p-n junction in single halide perovskite nanowire. Proc. Natl. Acad. Sci. USA 2018, 115, 8889–8894.
Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972.
Wang, J.; Chen, H.; Zhao, Y.; Zhong, Z. B.; Tang, Y.; Liu, G. Z.; Feng, X.; Xu, F. C.; Chen, X. H.; Cai, D. J. et al. Programmed ultrafast scan welding of Cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits. ACS Appl. Mater. Interfaces 2020, 12, 35211–35221.
Zhao, J.; Lin, R. K.; Wang, J. Y.; Sun, J. Q.; Dong, K. Q.; Zou, H. Y.; Lu, J. Y.; Ma, J. T.; Lu, S. D.; Ma, F. Y. et al. Ultra-thin size-controllable surface plasmon polariton laser by PDMS-assisted imprinting. J. Phys. D: Appl. Phys. 2024, 57, 405102.