Conjunctival melanoma (CοΜ) is of high malignancy that diffusely impacts the ocular surface, which is challenging to surgically remove and pose a life-threatening risk. As one of the most suitable treatment options, drug dropping drugs to the eye surface, however, is limited in its clinical application for CoM treatment due to low drug utilization. Using BRAF/MEK inhibitors (BRAF/MEKi) as model drugs, this study proposes a long-lasting eyedrop based on BRAF/MEK dual-targeted liposome-doped dynamic hydrogels with drugs (B/MLDDHs), which can overcome the tear flushing to succeed in effective ocular surface drug delivery. B/MLDDHs encapsulate drugs within lipid bilayers, enhancing drug bioavailability and biocompatibility. The aldehyde dextran and protonated chitosan-based injectable hydrogel system facilitates drug retention on the ocular surface exerting a sustained liposome release, which significantly enhances the drug bioavailability. In therapeutics, this study demonstrates significantly enhanced in vivo therapeutic effect on orthotopic mouse model of CoM. Given their ability to fulfill permeable and long-term release of hydrophobic drugs, B/MLDDHs may serve as a promising platform for non-invasive delivery of various drug molecules, thereby improving therapeutic outcomes for CoM.
Khidr, L.; Chen, P. L. RB, the conductor that orchestrates life, death and differentiation. Oncogene 2006, 25, 5210–5219.
Hu, D. N.; Yu, G. P.; McCormick, S. A.; Finger, P. T. Population-based incidence of conjunctival melanoma in various races and ethnic groups and comparison with other melanomas. Am. J. Ophthalmol. 2008, 145, 418–423.E1.
Grimes, J. M.; Shah, N. V.; Samie, F. H.; Carvajal, R. D.; Marr, B. P. conjunctival melanoma: Current treatments and future options. Am. J. Clin. Dermatol. 2020, 21, 371–381.
Rossi, E.; Schinzari, G.; Maiorano, B. A.; Pagliara, M. M.; Di Stefani, A.; Bria, E.; Peris, K.; Blasi, M. A.; Tortora, G. Conjunctival melanoma: Genetic and epigenetic insights of a distinct type of melanoma. Int. J. Mol. Sci. 2019, 20, 5447.
Mikkelsen, L. H. Molecular biology in conjunctival melanoma and the relationship to mucosal melanoma. Acta Ophthalmol 2020, 98 Suppl 115, 1–27.
Mikkelsen, L. H.; Larsen, A. C.; von Buchwald, C.; Drzewiecki, K. T.; Prause, J. U.; Heegaard, S. Mucosal malignant melanoma-a clinical, oncological, pathological and genetic survey. APMIS 2016, 124, 475–486.
Rodrigues, M.; de Koning, L.; Coupland, S. E.; Jochemsen, A. G.; Marais, R.; Stern, M. H.; Valente, A.; Barnhill, R.; Cassoux, N.; Evans, A. et al. So close, yet so far: Discrepancies between uveal and other melanomas. A position paper from UM cure 2020. Cancers (Basel) 2019, 11, 1032.
Jia, S. C.; Zhu, T. Y.; Shi, H. H.; Zong, C. Y.; Bao, Y. Y.; Wen, X. Y.; Ge, S. F.; Ruan, J.; Xu, S. Q.; Jia, R. B. et al. American joint committee on cancer tumor staging system predicts the outcome and metastasis pattern in conjunctival melanoma. Ophthalmology 2022, 129, 771–780.
Larsen, A. C.; lDahl, C.; Dahmcke, C. M.; Lade-Keller, J.; Siersma, V. D.; Toft, P. B.; Coupland, S. E.; Prause, J. U.; Guldberg, P.; Heegaard, S. et al. BRAF mutations in conjunctival melanoma: Investigation of incidence, clinicopathological features, prognosis and paired premalignant lesions. Acta Ophthalmol. 2016, 94, 463–470.
Finger, P. T.; Pavlick, A. C. Checkpoint inhibition immunotherapy for advanced local and systemic conjunctival melanoma: A clinical case series. J. Immunother. Cancer 2019, 7, 83.
Subbiah, V.; Baik, C.; Kirkwood, J. M. Clinical development of BRAF plus MEK inhibitor combinations. Trends Cancer 2020, 6, 797–810.
Wu, Y.; Li, X.; Fu, X. Y.; Huang, X. M.; Zhang, S. R.; Zhao, N.; Ma, X. W.; Saiding, Q.; Yang, M.; Tao, W. et al. Innovative nanotechnology in drug delivery systems for advanced treatment of posterior segment ocular diseases. Adv. Sci. (Weinh) 2024, 11, e2403399.
Wu, Y. M.; Liu, Y. Y.; Li, X. Y.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J. W.; Du, S. Y.; Liu, Z. D. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J. Pharm. Sci. 2019, 14, 1–15.
Arıcı, M. K.; Arıcı, D. S.; Topalkara, A.; Güler, C. Adverse effects of topical antiglaucoma drugs on the ocular surface. Clin. Exp. Ophthalmol. 2000, 28, 113–117.
Gholizadeh, S.; Wang, Z. Q.; Chen, X.; Dana, R.; Annabi, N. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov. Today 2021, 26, 1437–1449.
Zahir-Jouzdani, F.; Khonsari, F.; Soleimani, M.; Mahbod, M.; Arefian, E.; Heydari, M.; Shahhosseini, S.; Dinarvand, R.; Atyabi, F. Nanostructured lipid carriers containing rapamycin for prevention of corneal fibroblasts proliferation and haze propagation after burn injuries: In vitro and in vivo. J. Cell. Physiol. 2019, 234, 4702–4712.
Wang, X. Y.; Chen, L. B.; Wang, X. L.; Zhang, M. M.; Yang, F. M.; Wu, F.; Liu, J. Y.; Lu, L.; Pang, Y. Long-acting protective ocular surface by instilling adhesive dual-antiviral nanoparticles. Adv. Healthc. Mater. 2022, 11, e2200283.
Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.
Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.
Filipczak, N.; Pan, J. Y.; Yalamarty, S. S. K.; Torchilin, V. P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22.
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.
van der Koog, L.; Gandek, T. B.; Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater. 2022, 11, e2100639.
Battaglia, L.; Gallarate, M. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv. 2012, 9, 497–508.
Wang, Y.; Hu, Y. H.; An, J. Y.; Zhang, H.; Liu, X.; Li, X. R.; Zhang, Z. Z.; Zhang, X. M. Liposome-based permeable eyedrops for effective posterior segment drug delivery. Adv. Funct. Mater. 2024, 34, 2403142.
Li, X. Y.; Gong, J. P. Design principles for strong and tough hydrogels. Nat. Rev. Mater. 2024, 9, 380–398.
Wang, J.; Su, W.; Zhang, T. T.; Zhang, S. S.; Lei, H. W.; Ma, F. D.; Shi, M. N.; Shi, W. J.; Xie, X. D.; Di, C. X. Aberrant cyclin D1 splicing in cancer: From molecular mechanism to therapeutic modulation. Cell Death Dis. 2023, 14, 244.
Feng, W. B.; Huang, W. J.; Chen, J.; Qiao, C. Y.; Liu, D. F.; Ji, X. Y.; Xie, M.; Zhang, T. Y.; Wang, Y. J.; Sun, M. Y. CXCL12-mediated HOXB5 overexpression facilitates colorectal cancer metastasis through transactivating CXCR4 and ITGB3. Theranostics 2021, 11, 2612–2633.
Hamidi, H.; Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer 2018, 18, 533–548.
Yousefi, H.; Vatanmakanian, M.; Mahdiannasser, M.; Mashouri, L.; Alahari, N. V.; Monjezi, M. R.; Ilbeigi, S.; Alahari, S. K. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021, 40, 1043–1063.
Zheng, Z. Q.; Li, Z. X.; Zhou, G. Q.; Lin, L.; Zhang, L. L.; Lv, J. W.; Huang, X. D.; Liu, R. Q.; Chen, F. P.; He, X. J. et al. Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res. 2019, 79, 4612–4626.
Yuan, J. M.; Dong, X. D.; Yap, J.; Hu, J. C. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol. 2020, 13, 113.
Chang, L.; Jung, N. Y.; Atari, A.; Rodriguez, D. J.; Kesar, D.; Song, T. Y.; Rees, M. G.; Ronan, M.; Li, R. T.; Ruiz, P. et al. Systematic profiling of conditional pathway activation identifies context-dependent synthetic lethalities. Nat. Genet. 2023, 55, 1709–1720.
Yang, R. H.; Tang, S. C.; Xie, X. L.; Jin, C. F.; Tong, Y. H.; Huang, W. J.; Zan, X. J. Enhanced ocular delivery of beva via ultra-small polymeric micelles for noninvasive anti-VEGF therapy. Adv. Sci. (Weinh) 2024, 36, e2314126.
Chen, L. B.; Wu, F.; Pang, Y.; Yan, D.; Zhang, S. Y.; Chen, F. J.; Wu, N. X.; Gong, D. N.; Liu, J. Y.; Fu, Y. et al. Therapeutic nanocoating of ocular surface. Nano Today 2021, 41, 101309.
Chen, L. B.; Yan, D.; Wu, N. X.; Yao, Q. K.; Sun, H.; Pang, Y.; Fu, Y. Injectable bio-responsive hydrogel for therapy of inflammation related eyelid diseases. Bioact. Mater. 2021, 6, 3062–3073.
Geroski, D. H.; Edelhauser, H. F. Transscleral drug delivery for posterior segment disease. Adv. Drug Deliv. Rev. 2001, 52, 37–48.
Gumbiner, B. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 1987, 253, C749–C758.
Peng, C.; Kuang, L. J.; Zhao, J. Y.; Ross, A. E.; Wang, Z. Q.; Ciolino, J. B. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J. Control. Release 2022, 345, 625–645.
Wang, K.; Jiang, L.; Zhong, Y. Y.; Zhang, Y.; Yin, Q. C.; Li, S.; Zhang, X. B.; Han, H. J.; Yao, K. Ferrostatin-1-loaded liposome for treatment of corneal alkali burn via targeting ferroptosis. Bioeng. Transl. Med. 2022, 7, e10276.
Yang, J.; Bahreman, A.; Daudey, G.; Bussmann, J.; Olsthoorn, R. C. L.; Kros, A. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent. Sci. 2016, 2, 621–630.
de Salamanca, A. E.; Diebold, Y.; Calonge, M.; García-Vazquez, C.; Callejo, S.; Vila, A.; Alonso, M. J. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: Toxicity, uptake mechanism and in vivo tolerance. Invest. Ophthalmol. Vis. Sci. 2006, 47, 1416–1425.
Wang, Y. Y.; Zhou, L.; Fang, L.; Cao, F. Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomater. 2020, 104, 104–114.
Li, Y.; Liu, S. Y.; Zhang, J. J.; Wang, Y. M.; Lu, H. J.; Zhang, Y. X.; Song, G. Z.; Niu, F. H.; Shen, Y. F.; Midgley, A. C. et al. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun. 2024, 15, 1377.
Chen, S. L.; Luo, Y.; He, Y.; Li, M.; Liu, Y. J.; Zhou, X. S.; Hou, J. W.; Zhou, S. B. In-situ-sprayed therapeutic hydrogel for oxygen-actuated Janus regulation of postsurgical tumor recurrence/metastasis and wound healing. Nat. Commun. 2024, 15, 814.
Geng, S. Z.; Guo, P. K.; Wang, J.; Zhang, Y. Y.; Shi, Y. R.; Li, X. L.; Cao, M. N.; Song, Y. T.; Zhang, H. L.; Zhang, Z. Z. et al. Ultrasensitive optical detection and elimination of residual microtumors with a postoperative implantable hydrogel sensor for preventing cancer recurrence. Adv Mater. 2024, 36, 2307923.
Wang, D. Y.; Liu, J. W.; Duan, J.; Yi, H.; Liu, J. J.; Song, H. W.; Zhang, Z. Z.; Shi, J. J.; Zhang, K. X. Enrichment and sensing tumor cells by embedded immunomodulatory DNA hydrogel to inhibit postoperative tumor recurrence. Nat. Commun. 2023, 14, 4511.
Nam, S.; Mooney, D. Polymeric tissue adhesives. Chem. Rev. 2021, 121, 11336–11384.