PDF (32.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Nerve growth factor/angiogenin gene activated dermal bioscaffold for nerve repair in cutaneous wound healing

Min Yang1,2,3,§Fang He1,2,§Chenghao Cai1,2,§Yiran Wang1,2Jiaming Shao1,2Wei Zhang4Ximing Zhu5Tingting Weng6Ronghua Jin1,2Tao Shen7Chunmao Han1,2Pan Wu1,2()Bin Yao5()Yuqi Zhang1,8()Xingang Wang1,2()
Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Hangzhou 310000, China
Department of Wound Repair, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
Academy of Medical Engineering & Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
Department of Burn & Plastic Surgery, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310000, China
Department of Rehabilitation Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

§ Min Yang, Fang He, and Chenghao Cai contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
This work fabricated a dermal scaffold with dual gene activity, promoting neurological function restoration, nerve repair, angiogenesis, and collagen deposition via over-expression of both nerve growth factor (NGF) and angiogenin (ANG) in situ, finally achieved high-quality wound healing.

Abstract

Patients with extensive and deep skin defects treated with dermal scaffolds usually emphasize the importance of rapid angiogenesis, while overlook the crucial role of skin nerves in regenerative repair. Insufficient early nerve regeneration not only impedes skin reinnervation and angiogenesis, but also damages the synergistic effects among them, eventually hinders healing quality. Nerve growth factor (NGF) has shown potent potential in peripheral nerve regeneration and promotion of angiogenesis. Angiogenin (ANG) is an independent angiogenic factor, supplying microenvironment needed for neurogenesis. This study presents a dermal scaffold with dual gene activity, fabricated by incorporating nanoparticles (NPs) composed of polyethylenimine (PEI)-chimeric plasmids encoding both NGF and ANG (PEI-plasmid NGF/ANG dermal scaffold (NADS)). Specifically, NADS achieves sustained and in situ release of these two factors, and encourages the repair cells to fulfill their regenerative roles. In vivo experiments confirm the efficacy of NADS in promoting fully functional innervated skin regeneration, inducing the fastest healing rates and rapidly facilitating the formation of a mature vascular network, thus resulting in high-quality wound healing. This approach offers an effective and comprehensive strategy for clinical application.

Electronic Supplementary Material

Download File(s)
7193_ESM.pdf (2.2 MB)

References

[1]

Liu, T.; Qiu, C.; Ben, C.; Li, H. H.; Zhu, S. H. One-step approach for full-thickness skin defect reconstruction in rats using minced split-thickness skin grafts with Pelnac overlay. Burns Trauma 2019, 7, 19.

[2]

Yoon, J.; Yoon, D.; Lee, H.; Lee, J.; Jo, S.; Kym, D.; Yim, H.; Hur, J.; Chun, W.; Kim, G. et al. Wound healing ability of acellular fish skin and bovine collagen grafts for split-thickness donor sites in burn patients: Characterization of acellular grafts and clinical application. Int. J. Biol. Macromol. 2022, 205, 452–461.

[3]

Milan, P. B.; Lotfibakhshaiesh, N.; Joghataie, M. T.; Ai, J.; Pazouki, A.; Kaplan, D. L.; Kargozar, S.; Amini, N.; Hamblin, M. R.; Mozafari, M. et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater. 2016, 45, 234–246.

[4]

Simons, M.; Price, N.; Kimble, R.; Tyack, Z. Patient experiences of burn scars in adults and children and development of a health-related quality of life conceptual model: A qualitative study. Burns 2016, 42, 620–632.

[5]

Jiang, L.; Wu, X. Y.; Wang, Y. F.; Liu, C. L.; Wu, Y. X.; Wang, J. Y.; Xu, N.; He, Z. J.; Wang, S. Q.; Zhang, H. et al. Photothermal controlled-release immunomodulatory nanoplatform for restoring nerve structure and mechanical nociception in infectious diabetic ulcers. Adv. Sci. (Weinh.) 2023, 10, 2300339.

[6]

Roosterman, D.; Goerge, T.; Schneider, S. W.; Bunnett, N. W.; Steinhoff, M. Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. Physiol. Rev. 2006, 86, 1309–1379.

[7]

Li, W. L.; Kohara, H.; Uchida, Y.; James, J.; Soneji, K.; Cronshaw, D.; Zou, Y. R.; Nagasawa, T.; Mukouyama, Y. S. Peripheral nerve-derived CXCL12 and VEGF-A regulate the patterning of arterial vessel branching in developing limb skin. Dev. Cell 2013, 24, 359–371.

[8]

Mahar, M.; Cavalli, V. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 2018, 19, 323–337.

[9]

Wang, X. G.; You, C. G.; Hu, X. L.; Zheng, Y. R.; Li, Q. Y.; Feng, Z. Z.; Sun, H. F.; Gao, C. Y.; Han, C. M. The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats. Acta Biomater. 2013, 9, 7822–7832.

[10]

Wang, Z. Y.; Xu, H. L.; Yang, H.; Zhang, Y.; Wang, X. Y.; Wang, P.; Xu, Z. Y.; Lv, D. M.; Rong, Y. C.; Dong, Y. X. et al. Single-stage transplantation combined with epidermal stem cells promotes the survival of tissue-engineered skin by inducing early angiogenesis. Stem. Cell Res. Ther. 2023, 14, 51.

[11]

Wang, X. C.; Yu, Y. R.; Yang, C. Y.; Shang, L. R.; Zhao, Y. J.; Shen, X. Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration. Adv. Sci. (Weinh.) 2022, 9, 2201155.

[12]

Hosseini, M.; Shafiee, A. Engineering bioactive scaffolds for skin regeneration. Small 2021, 17, 2101384.

[13]

Aoki, M.; Yamashita, T.; Tohyama, M. EphA receptors direct the differentiation of mammalian neural precursor cells through a mitogen-activated protein kinase-dependent pathway. J. Biol. Chem. 2004, 279, 32643–32650.

[14]

Bonilla, I. E.; Tanabe, K.; Strittmatter, S. M. Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. J. Neurosci. 2002, 22, 1303–1315.

[15]

Kishimoto, K.; Liu, S. M.; Tsuji, T.; Olson, K. A.; Hu, G. F. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 2005, 24, 445–456.

[16]

Zeng, W.; Hui, H.; Liu, Z. Y.; Chang, Z.; Wang, M. B.; He, B. R.; Hao, D. J. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair. Carbohydr. Polym. 2021, 258, 117684.

[17]

Liu, S. B.; Yu, C. Y., Wei, H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater. Today Bio. 2023, 22, 100750.

[18]

Tong, Q.; Li, K. X.; Huang, F. W.; Dai, Y.; Zhang, T. Muaibati, M. ; Abuduyilimu, A.; Huang, X. Y. Extracellular vesicles hybrid plasmid-loaded lipid nanovesicles for synergistic cancer immunotherapy. Mater. Today Bio. 2023, 23, 100845.

[19]

Zhao, L. L.; Niu, L. J.; Liang, H. Z.; Tan, H.; Liu, C. Z.; Zhu, F. Y. pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl. Mater. Interfaces 2017, 9, 37563–37574.

[20]

Martin, J. R.; Nelson, C. E.; Gupta, M. K.; Yu, F.; Sarett, S. M.; Hocking, K. M.; Pollins, A. C.; Nanney, L. B.; Davidson, J. M. Local delivery of PHD2 siRNA from ROS-degradable scaffolds to promote diabetic wound healing. Adv. Healthc. Mater. 2016, 5, 2751–2757.

[21]

Tokatlian, T.; Cam, C.; Segura, T. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv. Healthc. Mater. 2015, 4, 1084–1091.

[22]

Liu, P.; Xiong, Y.; Chen, L.; Lin, C. C.; Yang, Y. Y.; Lin, Z.; Yu, Y. S.; Mi, B. B.; Liu, G. H.; Xiao, X. F. et al. Angiogenesis-based diabetic skin reconstruction through multifunctional hydrogel with sustained releasing of M2 Macrophage-derived exosome. Chem. Eng. J. 2022, 431, 132413.

[23]

Xie, H. Y.; Wang, J. Y.; Jiang, L. P.; Geng, C. Y.; Li, Q. J.; Mei, D.; Zhao, L.; Cao, J. ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells. Toxicol. in Vitro. 2016, 34, 146–152.

[24]

You, Y. T.; Chen, L. Q.; Wu, Y. F.; Wang, M.; Lu, H. Q.; Zhou, X. H.; Liu, H. X.; Fu, Z. X.; He, Q. X.; Ou, J. Y. et al. Silibinin promotes cell proliferation through facilitating G1/S transitions by activating Drp1-mediated mitochondrial fission in cells. Cell Transplant. 2020, 29, 963689720950213.

[25]

Bhat, G. P.; Maurizio, A.; Motta, A.; Podini, P.; Diprima, S.; Malpighi, C.; Brambilla, I.; Martins, L.; Badaloni, A.; Boselli, D. et al. Structured wound angiogenesis instructs mesenchymal barrier compartments in the regenerating nerve. Neuron 2024, 112, 209–229.e11.

[26]

Li, A. H.; Dubey, S.; Varney, M. L.; Dave, B. J.; Singh, R. K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 2003, 170, 3369–3376.

[27]

Blackburn, J. S.; Brinckerhoff, C. E. Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am. J. Pathol. 2008, 173, 1736–1746.

[28]

Teichert, M.; Milde, L.; Holm, A.; Stanicek, L.; Gengenbacher, N.; Savant, S.; Ruckdeschel, T.; Hasanov, Z.; Srivastava, K.; Hu, J. H. et al. Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat. Commun. 2017, 8, 16106.

[29]

Bouchentouf, M.; Williams, P.; Forner, K. A.; Cuerquis, J.; Michaud, V.; Paradis, P.; Schiffrin, E. L.; Galipeau, J. Interleukin-2 enhances angiogenesis and preserves cardiac function following myocardial infarction. Cytokine 2011, 56, 732–738.

[30]

Sullivan, K. A.; Kim, B.; Feldman, E. L. Insulin-like growth factors in the peripheral nervous system. Endocrinology 2008, 149, 5963–5971.

[31]

Zhu, H.; Xue, C. B.; Yao, M.; Wang, H. K.; Zhang, P.; Qian, T. M.; Zhou, S. L.; Li, S. Y.; Yu, B.; Wang, Y. J. et al. miR-129 controls axonal regeneration via regulating insulin-like growth factor-1 in peripheral nerve injury. Cell Death Dis. 2018, 9, 720.

[32]

Lu, P. J.; Wang, G.; Lu, X. H. Qiao, P. P.; Jin, Y. F.; Yu, J. Chen, Q.; Wang H. K. Elevated matrix metalloproteinase 9 supports peripheral nerve regeneration via promoting Schwann cell migration. Exp. Neurol. 2022, 352, 114020.

[33]

Zimmerman, A.; Bai, L.; Ginty, D. D. The gentle touch receptors of mammalian skin. Science 2014, 346, 950–954.

[34]

Ji, Z. X.; Wei, T.; Zhu, J. F.; Hu, J. Y.; Xiao, Z. S.; Bai, B. X.; Lv, X. Y.; Miao, Y.; Chen, M. C.; Wang, C. et al. Actively contractible and antibacterial hydrogel for accelerated wound healing. Nano Res. 2024, 17, 7394–7403.

[35]

Hogri, R.; Baltov, B.; Drdla-Schutting, R.; Mussetto, V.; Raphael, H.; Trofimova, L.; Sandkühler, J. Probing pain aversion in rats with the “Heat Escape Threshold” paradigm. Mol. Pain 2023, 19, 17448069231156657.

[36]

Woo, S. H.; Ranade, S.; Weyer, A. D.; Dubin, A. E.; Baba, Y.; Qiu, Z. Z.; Petrus, M.; Miyamoto, T.; Reddy, K.; Lumpkin, E. A. et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 2014, 509, 622–626.

[37]

Pereira, M. P.; Wiegmann, H.; Ständer, S. PIEZO1 channels in cutaneous free nerve endings: Novel insights into itch-scratch-mechanisms. Signal Transduct. Target Ther. 2023, 8, 4.

[38]

English, K. B.; Stayner, N.; Krueger, G.; Tuckett, R. P. Tactile function in skin-equivalent grafts. Exp. Neurol. 1992, 115, 104–108.

[39]

Le, A. P.; Friedman, W. J. Matrix metalloproteinase-7 regulates cleavage of pro-nerve growth factor and is neuroprotective following kainic acid-induced seizures. J. Neurosci. 2012, 32, 703–712.

[40]

Yokoyama, K.; Tezuka, T.; Kotani, M.; Nakazawa, T.; Hoshina, N.; Shimoda, Y.; Kakuta, S.; Sudo, K.; Watanabe, K.; Iwakura, Y. et al. NYAP: A phosphoprotein family that links PI3K to WAVE1 signalling in neurons. EMBO J. 2011, 30, 4739–4754.

[41]

Gupta, M.; Kamynina, E.; Morley, S.; Chung, S.; Muakkassa, N.; Wang, H.; Brathwaite, S.; Sharma, G.; Manor, D. Plekhg4 is a novel Dbl family guanine nucleotide exchange factor protein for rho family GTPases. J. Biol. Chem. 2013, 288, 14522–14530.

[42]

Yannas, I. V.; Tzeranis, D. S.; So, P. T. C. Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen. 2017, 25, 177–191.

[43]

Wang, X. G.; Wu, P.; Hu, X. Y.; You, C. G.; Guo, R.; Shi, H. F.; Guo, S. X.; Zhou, H. L.; Yu, C. H.; Zhang, Y. H. et al. Polyurethane membrane/knitted mesh-reinforced collagen-chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure. J. Mech. Behav. Biomed. Mater. 2016, 56, 120–133.

[44]

Dorrell, M. I.; Friedlander, M. Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog. Retin. Eye Res. 2006, 25, 277–295.

[45]

Cattin, A. L.; Burden, J. J.; Van Emmenis, L.; Mackenzie, F. E.; Hoving, J. J. A.; Calavia, N. G.; Guo, Y. P.; McLaughlin, M.; Rosenberg, L. H.; Quereda, V. et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell 2015, 162, 1127–1139.

[46]

Makita, T. Nerve control of blood vessel patterning. Dev. Cell 2013, 24, 340–341.

[47]
Khosravi, H.; Eskandari, N.; Provencher, B.; Provencher, B.; Paquette, T.; Leblond, H.; Khalilzadeh, E.; Piché, M. Back mechanical sensitivity assessment in the rat for mechanistic investigation of chronic back pain. J. Vis. Exp. 2022 , e63667, in press, https://doi.org/10.3791/63667.
Nano Research
Article number: 94907193
Cite this article:
Yang M, He F, Cai C, et al. Nerve growth factor/angiogenin gene activated dermal bioscaffold for nerve repair in cutaneous wound healing. Nano Research, 2025, 18(3): 94907193. https://doi.org/10.26599/NR.2025.94907193
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return