PDF (30.1 MB)
Collect
Submit Manuscript
Review Article | Open Access | Online First

DNA-based plasmonic nanostructures with tailored optical responses

Renjie Niu1,2Jiale Du1Wenqing He1Bing Liu1,3 ()Jie Chao1 ()
State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
Show Author Information

Graphical Abstract

View original image Download original image
This review encompasses the development of DNA nanotechnology and its application in constructing plasmonic nanostructures featuring diverse geometric configurations. It emphasizes the tailored optical responses of these structures, including surface-enhanced Raman scattering (SERS), fluorescence enhancement, and chirality.

Abstract

Plasmonic nanostructures, particularly those composed of noble metals such as gold and silver, have garnered extensive attention due to their exceptional physical and chemical properties, which are highly advantageous for optical sensing applications. The unique characteristics of DNA enable the precise spatial arrangement and functionalization of nanoparticles, allowing for the tailoring of optical characteristics within plasmonic systems. This review encompasses the development of DNA nanotechnology and its application in constructing plasmonic nanostructures featuring diverse geometric configurations. It emphasizes the tailored optical responses of these structures, including surface-enhanced Raman scattering (SERS), fluorescence enhancement, and chirality. The review concludes with a discussion of the opportunities and challenges facing DNA-based plasmonic nanostructures.

References

[1]

Kim, J. M.; Lee, C.; Lee, Y.; Lee, J.; Park, S. J.; Park, S.; Nam, J. M. Synthesis, assembly, optical properties, and sensing applications of plasmonic gap nanostructures. Adv. Mater. 2021, 33, 2006966.

[2]

Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097.

[3]

Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57.

[4]

Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

[5]

Ou, X. W.; Liu, Y. Q.; Zhang, M. X.; Hua, L.; Zhan, S. S. Plasmonic gold nanostructures for biosensing and bioimaging. Microchim. Acta 2021, 188, 304.

[6]

Yoon, J.; Shin, M.; Lee, J. Y.; Lee, S. N.; Choi, J. H.; Choi, J. W. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J. Control. Release 2022, 342, 228–240.

[7]

Cortés, E.; Besteiro, L. V.; Alabastri, A.; Baldi, A.; Tagliabue, G.; Demetriadou, A.; Narang, P. Challenges in plasmonic catalysis. ACS Nano 2020, 14, 16202–16219.

[8]

Ahmed, A.; Pelton, M.; Guest, J. R. Understanding how acoustic vibrations modulate the optical response of plasmonic metal nanoparticles. ACS Nano 2017, 11, 9360–9369.

[9]

Jessen, B. S.; Gammelgaard, L.; Thomsen, M. R.; Mackenzie, D. M. A.; Thomsen, J. D.; Caridad, J. M.; Duegaard, E.; Watanabe, K.; Taniguchi, T.; Booth, T. J. et al. Lithographic band structure engineering of graphene. Nat. Nanotechnol. 2019, 14, 340–346.

[10]

Oh, S.; Park, S. K.; Kim, J. H.; Cho, I.; Kim, H. J.; Park, S. Y. Patterned taping: A high-efficiency soft lithographic method for universal thin film patterning. ACS Nano 2016, 10, 3478–3485.

[11]

Seeman, N. C.; Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 2018, 3, 17068.

[12]

Jiang, Q.; Shang, Y. X.; Xie, Y. M.; Ding, B. Q. DNA origami: From molecular folding art to drug delivery technology. Adv. Mater. 2024, 36, 2301035.

[13]

Nummelin, S.; Kommeri, J.; Kostiainen, M. A.; Linko, V. Evolution of structural DNA nanotechnology. Adv. Mater. 2018, 30, 1703721.

[14]

Li, Y.; Pei, J.; Lu, X. H.; Jiao, Y. F.; Liu, F. S.; Wu, X. H.; Liu, J. B.; Ding, B. Q. Hierarchical assembly of super-DNA origami based on a flexible and covalent-bound branched DNA structure. J. Am. Chem. Soc. 2021, 143, 19893–19900.

[15]

Wang, Y.; Yan, X. H.; Zhou, Z. Y.; Ma, N. N.; Tian, Y. Ph-induced symmetry conversion of DNA origami lattices. Angew. Chem., Int. Ed. 2022, 61, e202208290.

[16]

Lan, X.; Wang, Q. B. DNA-programmed self-assembly of photonic nanoarchitectures. NPG Asia Mater. 2014, 6, e97.

[17]

Liu, Q.; Song, C.; Wang, Z. G.; Li, N.; Ding, B. Q. Precise organization of metal nanoparticles on DNA origami template. Methods 2014, 67, 205–214.

[18]

Liu, N.; Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 2018, 118, 3032–3053.

[19]

Zhu, R.; Li, J.; Lin, L. S.; Song, J. B.; Yang, H. H. Emerging plasmonic assemblies triggered by DNA for biomedical applications. Adv. Funct. Mater. 2021, 31, 2005709.

[20]

Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982, 99, 237–247.

[21]

Fu, T. J.; Seeman, N. C. DNA double-crossover molecules. Biochemistry 1993, 32, 3211–3220.

[22]

Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 1998, 394, 539–544.

[23]

Mao, C. D.; Sun, W. Q.; Shen, Z. Y.; Seeman, N. C. A nanomechanical device based on the B–Z transition of DNA. Nature 1999, 397, 144–146.

[24]

LaBean, T. H.; Yan, H.; Kopatsch, J.; Liu, F. R.; Winfree, E.; Reif, J. H.; Seeman, N. C. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 2000, 122, 1848–1860.

[25]

Maiti, P. K.; Pascal, T. A.; Vaidehi, N.; Goddard III, W. A. The stability of seeman JX DNA topoisomers of paranemic crossover (PX) molecules as a function of crossover number. Nucleic Acids Res. 2004, 32, 6047–6056.

[26]

Shen, Z. Y.; Yan, H.; Wang, T.; Seeman, N. C. Paranemic crossover DNA: A generalized holliday structure with applications in nanotechnology. J. Am. Chem. Soc. 2004, 126, 1666–1674.

[27]

Majumder, U.; Rangnekar, A.; Gothelf, K. V.; Reif, J. H.; LaBean, T. H. Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. J. Am. Chem. Soc. 2011, 133, 3843–3845.

[28]

Shih, W. M.; Quispe, J. D.; Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 2004, 427, 618–621.

[29]

Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

[30]

Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459, 414–418.

[31]

Yang, Y.; Han, D. R.; Nangreave, J.; Liu, Y.; Yan, H. DNA origami with double-stranded DNA as a unified scaffold. ACS Nano 2012, 6, 8209–8215.

[32]

Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: Scaffolds for creating higher order structures. Chem. Rev. 2017, 117, 12584–12640.

[33]

Xing, Y. Z.; Dorey, A.; Jayasinghe, L.; Howorka, S. Highly shape- and size-tunable membrane nanopores made with DNA. Nat. Nanotechnol. 2022, 17, 708–713.

[34]

Rossi-Gendron, C.; El Fakih, F.; Bourdon, L.; Nakazawa, K.; Finkel, J.; Triomphe, N.; Chocron, L.; Endo, M.; Sugiyama, H.; Bellot, G. et al. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures. Nat. Nanotechnol. 2023, 18, 1311–1318.

[35]

Ji, W.; Xiong, X. W.; Cao, M. Y.; Zhu, Y.; Li, L.; Wang, F.; Fan, C. H.; Pei, H. Encoding signal propagation on topology-programmed DNA origami. Nat. Chem. 2024, 16, 1408–1417.

[36]

Andersen, E. S.; Dong, M. D.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J. DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2008, 2, 1213–1218.

[37]

Bohlin, J.; Matthies, M.; Poppleton, E.; Procyk, J.; Mallya, A.; Yan, H.; Šulc, P. Design and simulation of DNA, RNA and hybrid protein-nucleic acid nanostructures with oxView. Nat. Protoc. 2022, 17, 1762–1788.

[38]

Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 2012, 338, 1177–1183.

[39]

Wei, B.; Dai, M. J.; Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012, 485, 623–626.

[40]

Deng, J.; Walther, A. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nat. Commun. 2021, 12, 5132.

[41]

Chen, R.; Feng, S.; Ren, J. L.; Kang, H.; Yang, Y. F.; Xia, N. N.; Fang, F.; Wei, B. Enzymatic assembly of DNA nanostructures and fragments with sequence overlaps. J. Am. Chem. Soc. 2023, 145, 9176–9181.

[42]

Yang, Q.; Chang, X.; Lee, J. Y.; Saji, M.; Zhang, F. DNA T-shaped crossover tiles for 2D tessellation and nanoring reconfiguration. Nat. Commun. 2023, 14, 7675.

[43]

Douglas, S. M.; Bachelet, I.; Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012, 335, 831–834.

[44]

Yurke, B.; Turberfield, A. J.; Mills, A. P. Jr. ; Simmel, F. C.; Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605–608.

[45]

Li, Y. L.; Tian, C.; Liu, Z. Y.; Jiang, W.; Mao, C. D. Structural transformation: Assembly of an otherwise inaccessible DNA nanocage. Angew. Chem., Int. Ed. 2015, 54, 5990–5993.

[46]

Gerling, T.; Wagenbauer, K. F.; Neuner, A. M.; Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 2015, 347, 1446–1452.

[47]

Liu, S. L.; Jiang, Q.; Zhao, X.; Zhao, R. F.; Wang, Y. N.; Wang, Y. M.; Liu, J. B.; Shang, Y. X.; Zhao, S.; Wu, T. T. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 2021, 20, 421–430.

[48]

Yin, J.; Wang, S. Y.; Wang, J. H.; Zhang, Y. W.; Fan, C. H.; Chao, J.; Gao, Y.; Wang, L. H. An intelligent DNA nanodevice for precision thrombolysis. Nat. Mater. 2024, 23, 854–862.

[49]

Kim, M.; Lee, C.; Jeon, K.; Lee, J. Y.; Kim, Y. J.; Lee, J. G.; Kim, H.; Cho, M.; Kim, D. N. Harnessing a paper-folding mechanism for reconfigurable DNA origami. Nature 2023, 619, 78–86.

[50]

Zolfaghari, A.; Chen, T. T.; Yi, A. Y. Additive manufacturing of precision optics at micro and nanoscale. Int. J. Extrem. Manuf. 2019, 1, 012005.

[51]

Zeng, S.; Liu, X. S.; Kafuti, Y. S.; Kim, H.; Wang, J. Y.; Peng, X. J.; Li, H. D.; Yoon, J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: Recent progress, challenges, and prospects. Chem. Soc. Rev. 2023, 52, 5607–5651.

[52]

Liu, D.; Shi, L.; Dai, Q. B.; Lin, X. N.; Mehmood, R.; Gu, Z.; Dai, L. M. Functionalization of carbon nanotubes for multifunctional applications. Trends Chem. 2024, 6, 186–210.

[53]

Mohanty, A. K.; Vivekanandhan, S.; Das, O.; Romero Millán, L. M.; Klinghoffer, N. B.; Nzihou, A.; Misra, M. Biocarbon materials. Nat. Rev. Methods Primers 2024, 4, 19.

[54]

Alivisatos, A. P.; Johnsson, K. P.; Peng, X. G.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P. Jr. ; Schultz, P. G. Organization of 'nanocrystal molecules' using DNA. Nature 1996, 382, 609–611.

[55]

Wang, H. Q.; Li, Y. L.; Liu, M.; Gong, M.; Deng, Z. X. Overcoming the coupling dilemma in DNA-programmable nanoparticle assemblies by "Ag+ soldering". Small 2015, 11, 2247–2251.

[56]

Chen, J. I. L.; Chen, Y.; Ginger, D. S. Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J. Am. Chem. Soc. 2010, 132, 9600–9601.

[57]

Lan, X.; Chen, Z.; Dai, G. L.; Lu, X. X.; Ni, W. H.; Wang, Q. B. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 2013, 135, 11441–11444.

[58]

Tang, L. J.; Li, S.; Han, F.; Liu, L. Q.; Xu, L. G.; Ma, W.; Kuang, H.; Li, A. K.; Wang, L. B.; Xu, C. L. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens. Bioelectron. 2015, 71, 7–12.

[59]

Tang, L. J.; Li, S.; Xu, L. G.; Ma, W.; Kuang, H.; Wang, L. B.; Xu, C. L. Chirality-based Au@Ag nanorod dimers sensor for ultrasensitive PSA detection. ACS Appl. Mater. Inter. 2015, 7, 12708–12712.

[60]

Simoncelli, S.; Roller, E. M.; Urban, P.; Schreiber, R.; Turberfield, A. J.; Liedl, T.; Lohmüller, T. Quantitative single-molecule surface-enhanced Raman scattering by optothermal tuning of DNA origami-assembled plasmonic nanoantennas. ACS Nano 2016, 10, 9809–9815.

[61]

Schuknecht, F.; Kołątaj, K.; Steinberger, M.; Liedl, T.; Lohmueller, T. Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment. Nat. Commun. 2023, 14, 7192.

[62]

Kanehira, Y.; Kogikoski, S. Jr. ; Titov, E.; Tapio, K.; Mostafa, A.; Bald, I. Watching a single enzyme at work using single-molecule surface-enhanced Raman scattering and DNA origami-based plasmonic antennas. ACS Nano 2024, 18, 20191–20200.

[63]

Liu, Z.; Wang, Z. H.; Guckel, J.; Akbarian, Z.; Seifert, T. J.; Park, D.; Schlickum, U.; Stosch, R.; Etzkorn, M. Controlling nanoparticle distance by on-surface DNA-origami folding. Small 2024, 20, 2310955.

[64]

Mostafa, A.; Kanehira, Y.; Tapio, K.; Bald, I. From bulk to single molecules: Surface-enhanced Raman scattering of cytochrome C using plasmonic DNA origami nanoantennas. Nano Lett. 2024, 24, 6916–6923.

[65]

Sharma, M.; Kaur, C.; Singhmar, P.; Rai, S.; Sen, T. DNA origami-templated gold nanorod dimer nanoantennas: Enabling addressable optical hotspots for single cancer biomarker SERS detection. Nanoscale 2024, 16, 15128–15140.

[66]

Wu, L. T.; Tanwar, S.; Kaur, G.; Date, S.; Goel, L.; Chatterjee, A.; McGuiggan, P.; Barman, I. DNA origami-engineered plasmonic nanoprobes for targeted cancer imaging. Adv. Funct. Mater. 2024, 34, 2309929.

[67]

Acuna, G. P.; Möller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 2012, 338, 506–510.

[68]

Jiang, Q.; Liu, Q.; Shi, Y. F.; Wang, Z. G.; Zhan, P. F.; Liu, J. B.; Liu, C.; Wang, H.; Shi, X. H.; Zhang, L. et al. Stimulus-responsive plasmonic chiral signals of gold nanorods organized on DNA origami. Nano Lett. 2017, 17, 7125–7130.

[69]

Xin, L.; Zhou, C.; Duan, X. Y.; Liu, N. A rotary plasmonic nanoclock. Nat. Commun. 2019, 10, 5394.

[70]

Liu, Y.; Ge, H.; Wang, Y. Q.; Tang, L. L.; Pei, Y. F.; Fan, S. S.; Song, Y. X.; Zhang, C.; Song, J. Multistep transformations of DNA origami domino array via mechanical forces. Small Struct. 2023, 4, 2200167.

[71]

Liu, F. S.; Li, N.; Shang, Y. X.; Wang, Y. M.; Liu, Q.; Ma, Z. T.; Jiang, Q.; Ding, B. Q. A DNA-based plasmonic nanodevice for cascade signal amplification. Angewandte Chemie 2022, 61, e202114706.

[72]

Song, X. J.; Wang, Y. L.; Hao, Y.; Zhu, Q. Q.; Li, Y. J.; Song, L.; Deng, Z. X. Sub-1.5 nm-gapped heterodimeric plasmonic nanomolecules. Chem. Sci. 2022, 13, 4788–4793.

[73]

Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60–67.

[74]

Hao, C. L.; Xu, L. G.; Ma, W.; Wang, L. B.; Kuang, H.; Xu, C. L. Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response. Small 2014, 10, 1805–1812.

[75]

Weller, L.; Thacker, V. V.; Herrmann, L. O.; Hemmig, E. A.; Lombardi, A.; Keyser, U. F.; Baumberg, J. J. Gap-dependent coupling of Ag–Au nanoparticle heterodimers using DNA origami-based self-assembly. ACS Photonics 2016, 3, 1589–1595.

[76]

Kanehira, Y.; Tapio, K.; Wegner, G.; Kogikoski, S. Jr. ; Rüstig, S.; Prietzel, C.; Busch, K.; Bald, I. The effect of nanoparticle composition on the surface-enhanced Raman scattering performance of plasmonic DNA origami nanoantennas. ACS Nano 2023, 17, 21227–21239.

[77]

Yu, Y.; Lei, Y. X.; Dong, Q.; Li, Y. L. Functionalization of tile-based DNA nanocages with gold nanoparticles (AuNPs) to form AuNP cluster-DNA cage hybrids. ChemNanoMat 2020, 6, 1175–1178.

[78]

Chen, X. L.; Ding, L. J.; Wang, Y.; Gao, Z. S.; Li, J.; Liu, X. G.; Wang, L. H.; Zhu, Y.; Fan, C. H.; Jia, S. S. et al. Welded gold nanoparticle assemblies defined plasmonic coupling. Nano Lett. 2024, 24, 8956–8963.

[79]

Mastroianni, A. J.; Claridge, S. A.; Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 2009, 131, 8455–8459.

[80]

Yan, W. J.; Xu, L. G.; Xu, C. L.; Ma, W.; Kuang, H.; Wang, L. B.; Kotov, N. A. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 2012, 134, 15114–15121.

[81]

Sun, M. Z.; Hao, T. T.; Li, X. Y.; Qu, A. H.; Xu, L. G.; Hao, C. L.; Xu, C. L.; Kuang, H. Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nat. Commun. 2018, 9, 4494.

[82]

Xu, L. G.; Yan, W. J.; Ma, W.; Kuang, H.; Wu, X. L.; Liu, L.; Zhao, Y.; Wang, L. B.; Xu, C. L. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers. Adv. Mater. 2015, 27, 1706–1711.

[83]

Shen, X. B.; Asenjo-Garcia, A.; Liu, Q.; Jiang, Q.; de Abajo, F. J. G.; Liu, N.; Ding, B. Q. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013, 13, 2128–2133.

[84]

Pilo-Pais, M.; Watson, A.; Demers, S.; LaBean, T. H.; Finkelstein, G. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Nano Lett. 2014, 14, 2099–2104.

[85]

Roller, E. M.; Khorashad, L. K.; Fedoruk, M.; Schreiber, R.; Govorov, A. O.; Liedl, T. DNA-assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies. Nano Lett. 2015, 15, 1368–1373.

[86]

Chao, J.; Zhang, Y. N.; Zhu, D.; Liu, B.; Cui, C. J.; Su, S.; Fan, C. H.; Wang, L. H. Hetero-assembly of gold nanoparticles on a DNA origami template. Sci. China Chem. 2016, 59, 730–734.

[87]

Zhao, M. Z.; Wang, X.; Ren, S. K.; Xing, Y. K.; Wang, J.; Teng, N.; Zhao, D. X.; Liu, W.; Zhu, D.; Su, S. et al. Cavity-type DNA origami-based plasmonic nanostructures for Raman enhancement. ACS Appl. Mater. Interfaces 2017, 9, 21942–21948.

[88]

Fang, W. N.; Jia, S. S.; Chao, J.; Wang, L. Q.; Duan, X. Y.; Liu, H. J.; Li, Q.; Zuo, X. L.; Wang, L. H.; Wang, L. H. et al. Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. Sci. Adv. 2019, 5, eaau4506.

[89]

Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 1998, 120, 12674–12675.

[90]

Ma, W.; Fu, P.; Sun, M. Z.; Xu, L. G.; Kuang, H.; Xu, C. L. Dual quantification of MicroRNAs and telomerase in living cells. J. Am. Chem. Soc. 2017, 139, 11752–11759.

[91]

Qu, A. H.; Xu, L. G.; Sun, M. Z.; Liu, L. Q.; Kuang, H.; Xu, C. L. Photoactive hybrid AuNR-Pt@Ag2S core-satellite nanostructures for near-infrared quantitive cell imaging. Adv. Funct. Mater. 2017, 27, 1703408.

[92]

He, M. Q.; Chen, S.; Yao, K.; Wang, K.; Yu, Y. L.; Wang, J. H. Oriented assembly of gold nanoparticles with freezing-driven surface DNA manipulation and its application in SERS-based MicroRNA assay. Small Methods 2019, 3, 1900017.

[93]

Feng, N.; Zhang, L.; Shen, J. J.; Hu, Y. L.; Wu, W. B.; Kouadio Fodjo, E.; Chen, S. F.; Huang, W.; Wang, L. H. SERS molecular-ruler based DNA aptamer single-molecule and its application to multi-level optical storage. Chem. Eng. J. 2022, 433, 133666.

[94]

Maye, M. M.; Nykypanchuk, D.; Cuisinier, M.; van der Lelie, D.; Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat. Mater. 2009, 8, 388–391.

[95]

Li, L. L.; Wu, P. W.; Hwang, K.; Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 2013, 135, 2411–2414.

[96]

Xu, L. G.; Hao, C. L.; Yin, H. H.; Liu, L. Q.; Ma, W.; Wang, L. B.; Kuang, H.; Xu, C. L. Plasmonic core-satellites nanostructures with high chirality and bioproperty. J. Phys. Chem. Lett. 2013, 4, 2379–2384.

[97]

Zhang, T. T.; Li, H.; Hou, S. W.; Dong, Y. Q.; Pang, G. S.; Zhang, Y. W. Construction of plasmonic core-satellite nanostructures on substrates based on DNA-directed self-assembly as a sensitive and reproducible biosensor. ACS Appl. Mater. Interfaces 2015, 7, 27131–27139.

[98]

Li, M. X.; Xu, C. H.; Zhang, N.; Qian, G. S.; Zhao, W.; Xu, J. J.; Chen, H. Y. Exploration of the kinetics of toehold-mediated strand displacement via plasmon rulers. ACS Nano 2018, 12, 3341–3350.

[99]

Liu, C. H.; Chen, C.; Li, S. Z.; Dong, H. F.; Dai, W. H.; Xu, T. L.; Liu, Y.; Yang, F.; Zhang, X. J. Target-triggered catalytic hairpin assembly-induced core-satellite nanostructures for high-sensitive "off-to-on" SERS detection of intracellular MicroRNA. Anal. Chem. 2018, 90, 10591–10599.

[100]

Qu, A. H.; Sun, M. Z.; Xu, L. G.; Hao, C. L.; Wu, X. L.; Xu, C. L.; Kotov, N. A.; Kuang, H. Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proc. Natl. Acad. Sci. USA 2019, 116, 3391–3400.

[101]

Meng, D.; Ma, W.; Wu, X. L.; Xu, C. L.; Kuang, H. DNA-driven two-layer core-satellite gold nanostructures for ultrasensitive MicroRNA detection in living cells. Small 2020, 16, 2000003.

[102]

Le, N. H.; Cathcart, N.; Kitaev, V.; Chen, J. I. L. Core-satellite assembly of gold nanoshells on solid gold nanoparticles for a color coding plasmonic nanosensor. Analyst 2022, 147, 155–164.

[103]

Zhang, D. D.; Wang, K.; Wei, W.; Liu, Y.; Liu, S. Q. Multifunctional plasmonic core-satellites nanoprobe for cancer diagnosis and therapy based on a cascade reaction induced by microrna. Anal. Chem. 2021, 93, 9521–9530.

[104]

Trinh, H. D.; Yoon, S. Silica-encapsulated core-satellite gold nanoparticle assemblies as stable, sensitive, and multiplex surface-enhanced Raman scattering probes. ACS Appl. Nano Mater. 2022, 5, 5087–5095.

[105]

Tan, Y.; Zhou, J. X.; Xing, X. T.; Wang, J. R.; Huang, J. K.; Liu, H. Y.; Chen, J. J.; Dong, M. J.; Xiang, Q.; Dong, H. F. et al. DNA assembly of plasmonic nanostructures enables in vivo SERS-based MicroRNA detection and tumor photoacoustic imaging. Anal. Chem. 2023, 95, 11236–11242.

[106]

Jaitpal, S.; Ng, K. W.; Juan, A. M. S.; Martinez, C.; Phillips, C.; Tripathy, S.; Mabbott, S. DNA-directed formation of plasmonic core-satellite nanostructures for quantification of hepatitis C viral RNA. Chem. Sci. 2024, 15, 8112–8126.

[107]

Xu, L. G.; Kuang, H.; Xu, C. L.; Ma, W.; Wang, L. B.; Kotov, N. A. Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J. Am. Chem. Soc. 2012, 134, 1699–1709.

[108]

Zhang, Y. N.; Chao, J.; Liu, H. J.; Wang, F.; Su, S.; Liu, B.; Zhang, L.; Shi, J. Y.; Wang, L. H.; Huang, W. et al. Transfer of two-dimensional oligonucleotide patterns onto stereocontrolled plasmonic nanostructures through DNA-origami-based nanoimprinting lithography. Angew. Chem., Int. Ed. 2016, 55, 8036–8040.

[109]

Liu, B.; Song, C. Y.; Zhu, D.; Wang, X.; Zhao, M. Z.; Yang, Y. J.; Zhang, Y. N.; Su, S.; Shi, J. Y.; Chao, J. et al. DNA-origami-based assembly of anisotropic plasmonic gold nanostructures. Small 2017, 13, 1603991.

[110]

Niu, R. J.; Song, C. Y.; Gao, F.; Fang, W. N.; Jiang, X. Y.; Ren, S. K.; Zhu, D.; Su, S.; Chao, J.; Chen, S. F. et al. DNA origami-based nanoprinting for the assembly of plasmonic nanostructures with single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2021, 60, 11695–11701.

[111]

Edwardson, T. G. W.; Lau, K. L.; Bousmail, D.; Serpell, C. J.; Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 2016, 8, 162–170.

[112]

Xie, N. L.; Liu, S. Y.; Fang, H. M.; Yang, Y. J.; Quan, K.; Li, J.; Yang, X. H.; Wang, K. M.; Huang, J. Three-dimensional molecular transfer from DNA nanocages to inner gold nanoparticle surfaces. ACS Nano 2019, 13, 4174–4182.

[113]

Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.

[114]

Shen, X. B.; Song, C.; Wang, J. Y.; Shi, D. W.; Wang, Z. G.; Liu, N.; Ding, B. Q. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 2012, 134, 146–149.

[115]

Martens, K.; Funck, T.; Kempter, S.; Roller, E. M.; Liedl, T.; Blaschke, B. M.; Knecht, P.; Garrido, J. A.; Zhang, B. R.; Kitzerow, H. Alignment and graphene-assisted decoration of lyotropic chromonic liquid crystals containing DNA origami nanostructures. Small 2016, 12, 1658–1666.

[116]

Shen, C. Q.; Lan, X.; Zhu, C. G.; Zhang, W.; Wang, L. Y.; Wang, Q. B. Spiral patterning of Au nanoparticles on Au nanorod surface to form chiral AuNR@AuNP helical superstructures templated by DNA origami. Adv. Mater. 2017, 29, 1606533.

[117]

Benn, F.; Haley, N. E. C.; Lucas, A. E.; Silvester, E.; Helmi, S.; Schreiber, R.; Bath, J.; Turberfield, A. J. Chiral DNA origami nanotubes with well-defined and addressable inside and outside surfaces. Angew. Chem., Int. Ed. 2018, 57, 7687–7690.

[118]

Golla, M.; Albert, S. K.; Atchimnaidu, S.; Perumal, D.; Krishnan, N.; Varghese, R. DNA-decorated, helically twisted nanoribbons: A scaffold for the fabrication of one-dimensional, chiral, plasmonic nanostructures. Angew. Chem., Int. Ed. 2019, 58, 3865–3869.

[119]

Ma, L.; Liu, Y.; Han, C.; Movsesyan, A.; Li, P. H.; Li, H. C.; Tang, P.; Yuan, Y. Q.; Jiang, S. X.; Ni, W. H. et al. DNA-assembled chiral satellite-core nanoparticle superstructures: Two-state chiral interactions from dynamic and static conformations. Nano Lett. 2022, 22, 4784–4791.

[120]

Martens, K.; Funck, T.; Santiago, E. Y.; Govorov, A. O.; Burger, S.; Liedl, T. Onset of chirality in plasmonic meta-molecules and dielectric coupling. ACS Nano 2022, 16, 16143–16149.

[121]

Peil, A.; Zhan, P. F.; Duan, X. Y.; Krahne, R.; Garoli, D.; Liz-Marzán, L. M.; Liu, N. Transformable plasmonic helix with swinging gold nanoparticles. Angew. Chem., Int. Ed. 2023, 62, e202213992.

[122]

Cecconello, A.; Cencini, A.; Rilievo, G.; Tonolo, F.; Litti, L.; Vianello, F.; Willner, I.; Magro, M. Chiroplasmonic DNA scaffolded "fusilli" structures. Nano Lett. 2024, 24, 5944–5951.

[123]

Schreiber, R.; Luong, N.; Fan, Z. Y.; Kuzyk, A.; Nickels, P. C.; Zhang, T.; Smith, D. M.; Yurke, B.; Kuang, W.; Govorov, A. O. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 2013, 4, 2948.

[124]

Cecconello, A.; Kahn, J. S.; Lu, C. H.; Khosravi Khorashad, L.; Govorov, A. O.; Willner, I. DNA scaffolds for the dictated assembly of left-/right-handed plasmonic Au NP helices with programmed chiro-optical properties. J. Am. Chem. Soc. 2016, 138, 9895–9901.

[125]

Urban, M. J.; Dutta, P. K.; Wang, P. F.; Duan, X. Y.; Shen, X. B.; Ding, B. Q.; Ke, Y. G.; Liu, N. Plasmonic toroidal metamolecules assembled by DNA origami. J. Am. Chem. Soc. 2016, 138, 5495–5498.

[126]

Wang, M.; Dong, J. Y.; Zhou, C.; Xie, H.; Ni, W. H.; Wang, S.; Jin, H. L.; Wang, Q. B. Reconfigurable plasmonic diastereomers assembled by DNA origami. ACS Nano 2019, 13, 13702–13708.

[127]

Kim, T.; Lee, C.; Lee, J. Y.; Kim, D. N. Controlling chiroptical responses via chemo-mechanical deformation of DNA origami structures. ACS Nano 2024, 18, 3414–3423.

[128]

Zhang, C.; Li, X.; Tian, C.; Yu, G. M.; Li, Y. L.; Jiang, W.; Mao, C. D. DNA nanocages swallow gold nanoparticles (AuNPs) to form AuNP@DNA cage core-shell structures. ACS Nano 2014, 8, 1130–1135.

[129]

Li, Y. L.; Liu, Z. Y.; Yu, G. M.; Jiang, W.; Mao, C. D. Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages. J. Am. Chem. Soc. 2015, 137, 4320–4323.

[130]

Zhou, C. Y.; Yang, Y. J.; Li, H. F.; Gao, F.; Song, C. Y.; Yang, D. L.; Xu, F.; Liu, N.; Ke, Y. G.; Su, S. et al. Programming surface-enhanced Raman scattering of DNA origami-templated metamolecules. Nano Lett. 2020, 20, 3155–3159.

[131]

Martens, K.; Binkowski, F.; Nguyen, L.; Hu, L.; Govorov, A. O.; Burger, S.; Liedl, T. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains. Nat. Commun. 2021, 12, 2025.

[132]

Zhang, Y. H.; Allen, A. C.; Petrek, Z. J.; Cao, H. H.; Kumar, D.; Goodlad, M. C.; Martinez, V. G.; Singh, J.; Zhang, J. Z.; Ye, T. Formation of linear plasmonic heterotrimers using nanoparticle docking to DNA origami cages. J. Phys. Chem. C 2024, 128, 11699–11708.

[133]

Zhan, P. F.; Dutta, P. K.; Wang, P. F.; Song, G.; Dai, M. J.; Zhao, S. X.; Wang, Z. G.; Yin, P.; Zhang, W.; Ding, B. Q. et al. Reconfigurable three-dimensional gold nanorod plasmonic nanostructures organized on DNA origami tripod. ACS Nano 2017, 11, 1172–1179.

[134]

Heck, C.; Kanehira, Y.; Kneipp, J.; Bald, I. Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses. Angew. Chem., Int. Ed. 2018, 57, 7444–7447.

[135]

Man, T. T.; Ji, W.; Liu, X. G.; Zhang, C.; Li, L.; Pei, H.; Fan, C. H. Chiral metamolecules with active plasmonic transition. ACS Nano 2019, 13, 4826–4833.

[136]

Yeşilyurt, A. T. M.; Sanz-Paz, M.; Zhu, F. J.; Wu, X. F.; Sunil, K. S.; Acuna, G. P.; Huang, J. S. Unidirectional meta-emitters based on the kerker condition assembled by DNA origami. ACS Nano 2023, 17, 19189–19196.

[137]

Liu, W. Y.; Li, L.; Yang, S.; Gao, J.; Wang, R. S. Self-assembly of heterogeneously shaped nanoparticles into plasmonic metamolecules on DNA origami. Chemistry 2017, 23, 14177–14181.

[138]

Lee, J.; Huh, J. H.; Kim, K.; Lee, S. DNA origami-guided assembly of the roundest 60-100 nm gold nanospheres into plasmonic metamolecules. Adv. Funct. Mater. 2018, 28, 1707309.

[139]

Sun, M. Y.; Xie, M.; Jiang, J. K.; Qi, Z. L.; Wang, L. H.; Chao, J. Customized self-assembled gold nanoparticle-DNA origami composite templates for shape-directed growth of plasmonic structures. Nano Lett. 2024, 24, 6480–6487.

[140]

Vial, S.; Nykypanchuk, D.; Yager, K. G.; Tkachenko, A. V.; Gang, O. Linear mesostructures in DNA-nanorod self-assembly. ACS Nano 2013, 7, 5437–5445.

[141]

Ma, W.; Kuang, H.; Xu, L. G.; Ding, L.; Xu, C. L.; Wang, L. B.; Kotov, N. A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689.

[142]

Li, H. Y.; Park, S. H.; Reif, J. H.; LaBean, T. H.; Yan, H. DNA-templated self-assembly of protein and nanoparticle linear arrays. J. Am. Chem. Soc. 2004, 126, 418–419.

[143]

Sharma, J.; Chhabra, R.; Cheng, A. C.; Brownell, J.; Liu, Y.; Yan, H. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 2009, 323, 112–116.

[144]

Ren, S. K.; Wang, J.; Song, C. Y.; Li, Q.; Yang, Y. J.; Teng, N.; Su, S.; Zhu, D.; Huang, W.; Chao, J. et al. Single-step organization of plasmonic gold metamaterials with self-assembled DNA nanostructures. Research 2019, 2019, 7403580.

[145]

Lan, X.; Lu, X. X.; Shen, C. Q.; Ke, Y. G.; Ni, W. H.; Wang, Q. B. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 2015, 137, 457–462.

[146]

Tian, C.; Cordeiro, M. A. L.; Lhermitte, J.; Xin, H. L.; Shani, L.; Liu, M. Z.; Ma, C. L.; Yeshurun, Y.; DiMarzio, D.; Gang, O. Supra-nanoparticle functional assemblies through programmable stacking. ACS Nano 2017, 11, 7036–7048.

[147]

Wang, P. F.; Huh, J. H.; Park, H.; Yang, D. L.; Zhang, Y. W.; Zhang, Y. L.; Lee, J.; Lee, S.; Ke, Y. G. DNA origami guided self-assembly of plasmonic polymers with robust long-range plasmonic resonance. Nano Lett. 2020, 20, 8926–8932.

[148]

Lan, X.; Liu, T. J.; Wang, Z. M.; Govorov, A. O.; Yan, H.; Liu, Y. DNA-guided plasmonic helix with switchable chirality. J. Am. Chem. Soc. 2018, 140, 11763–11770.

[149]

Xiao, S. J.; Liu, F. R.; Rosen, A. E.; Hainfeld, J. F.; Seeman, N. C.; Musier-Forsyth, K.; Kiehl, R. A. Selfassembly of metallic nanoparticle arrays by DNA scaffolding. J. Nanopart. Res. 2002, 4, 313–317.

[150]

Le, J. D.; Pinto, Y.; Seeman, N. C.; Musier-Forsyth, K.; Taton, T. A.; Kiehl, R. A. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 2004, 4, 2343–2347.

[151]

Pinto, Y. Y.; Le, J. D.; Seeman, N. C.; Musier-Forsyth, K.; Taton, T. A.; Kiehl, R. A. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 2005, 5, 2399–2402.

[152]

Zheng, J. W.; Constantinou, P. E.; Micheel, C.; Alivisatos, A. P.; Kiehl, R. A.; Seeman, N. C. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 2006, 6, 1502–1504.

[153]

Zhang, J. P.; Liu, Y.; Ke, Y. G.; Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 2006, 6, 248–251.

[154]

Sharma, J.; Chhabra, R.; Liu, Y.; Ke, Y. G.; Yan, H. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem., Int. Ed. 2006, 45, 730–735.

[155]

Tang, J.; Ji, C.; Lu, X.; Cao, H. T.; Ling, Y. F.; Wu, Y. Q.; Qian, L. L.; He, Y.; Song, B.; Wang, H. Y. DNA origami plasmonic nanoantenna for programmable biosensing of multiple cytokines in cancer immunotherapy. Anal. Chem. 2024, 96, 9684–9692.

[156]

Liu, W. Y.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 2016, 8, 867–873.

[157]

Wang, P. F.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y. G. Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials. J. Am. Chem. Soc. 2016, 138, 7733–7740.

[158]

Wang, M. Y.; Dai, L. Z.; Duan, J. L.; Ding, Z. Y.; Wang, P.; Li, Z.; Xing, H.; Tian, Y. Programmable assembly of nano-architectures through designing anisotropic DNA origami patches. Angew. Chem., Int. Ed. 2020, 59, 6389–6396.

[159]

Schreiber, R.; Santiago, I.; Ardavan, A.; Turberfield, A. J. Ordering gold nanoparticles with DNA origami nanoflowers. ACS Nano 2016, 10, 7303–7306.

[160]

Yin, J.; Xie, M.; Wang, J. K.; Cui, M. R.; Zhu, D.; Su, S.; Fan, C. H.; Chao, J.; Li, Q.; Wang, L. H. Gold-nanoparticle-mediated assembly of high-order DNA nano-architectures. Small 2022, 18, 2200824.

[161]

Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451, 549–552.

[162]

Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553–556.

[163]

Xiong, H. M.; Sfeir, M. Y.; Gang, O. Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices. Nano Lett. 2010, 10, 4456–4462.

[164]

Young, K. L.; Ross, M. B.; Blaber, M. G.; Rycenga, M.; Jones, M. R.; Zhang, C.; Senesi, A. J.; Lee, B.; Schatz, G. C.; Mirkin, C. A. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv. Mater. 2014, 26, 653–659.

[165]

Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453–458.

[166]

Sun, L.; Lin, H. X.; Park, D. J.; Bourgeois, M. R.; Ross, M. B.; Ku, J. C.; Schatz, G. C.; Mirkin, C. A. Polarization-dependent optical response in anisotropic nanoparticle-DNA superlattices. Nano Lett. 2017, 17, 2313–2318.

[167]

Tian, Y.; Lhermitte, J. R.; Bai, L.; Vo, T.; Xin, H. L.; Li, H. L.; Li, R. P.; Fukuto, M.; Yager, K. G.; Kahn, J. S. et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 2020, 19, 789–796.

[168]

Tian, Y.; Zhang, Y. G.; Wang, T.; Xin, H. L.; Li, H. L.; Gang, O. Lattice engineering through nanoparticle-DNA frameworks. Nat. Mater. 2016, 15, 654–661.

[169]

Shani, L.; Michelson, A. N.; Minevich, B.; Fleger, Y.; Stern, M.; Shaulov, A.; Yeshurun, Y.; Gang, O. DNA-assembled superconducting 3D nanoscale architectures. Nat. Commun. 2020, 11, 5697.

[170]

Ji, M.; Zhou, Z. Y.; Cao, W. H.; Ma, N. N.; Xu, W. G.; Tian, Y. A universal way to enrich the nanoparticle lattices with polychrome DNA origami "homologs". Sci. Adv. 2022, 8, eadc9755.

[171]
Zhang, T.; Hartl, C.; Frank, K.; Heuer-Jungemann, A.; Fischer, S.; Nickels, P. C.; Nickel, B.; Liedl, T. 3D DNA origami crystals. Adv. Mater. 2018 , 30, 1800273.
[172]

Xu, Y. N.; Zhang, Q.; Chen, R. Z.; Cao, H. T.; Tang, J.; Wu, Y. Q.; Lu, X.; Chu, B. B.; Song, B.; Wang, H. Y. et al. NIR-II photoacoustic-active DNA origami nanoantenna for early diagnosis and smart therapy of acute kidney injury. J. Am. Chem. Soc. 2022, 144, 23522–23533.

[173]

Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931.

[174]

Zhu, J. J.; Wu, F.; Han, Z. H.; Shang, Y. X.; Liu, F. S.; Yu, H. Y.; Yu, L.; Li, N.; Ding, B. Q. Strong light-matter interactions in chiral plasmonic-excitonic systems assembled on DNA origami. Nano Lett. 2021, 21, 3573–3580.

Nano Research
Cite this article:
Niu R, Du J, He W, et al. DNA-based plasmonic nanostructures with tailored optical responses. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907197
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return