Integration of phase-change materials (PCMs) created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target application. Conventional PCMs such as Ge-Sb-Te (GST) and Ge-Sb-Se-Te (GSST) rely on melt-quench and high temperature annealing processes to change the organization of the molecules in the materials’ crystal. Such a reorganization leads to different optical, electrical, and thermal properties which can be exploited to implement photonic memory cells that are able to store the data at different resistance or optical transmission levels. Despite the great promise of conventional PCMs for realizing reconfigurable photonic memories, their slow and extremely power-hungry thermal mechanisms make scaling the systems based on such devices challenging. In addition, such materials do not offer a stable multi-level response over a long period of time. To address these shortcomings, the research carried out in this study shows the proof of concept to implement next-generation photonic memory cells based on two-dimensional (2D) birefringence PCMs such as SnSe, which offer anisotropic optical properties that can be switched ferroelectrically. We demonstrate that by leveraging the ultrafast and low-power crystallographic direction change of the material, the optical polarization state of the input optical signal can be changed. This enables the implementation of next-generation high-speed polarization-encodable photonic memory cells for future photonic computing systems. Compared to the conventional PCMs, the proposed SnSe-based photonic memory cells offer an ultrafast switching and low-loss optical response relying on ferroelectric property of SnSe to encode the data on the polarization state of the input optical signal. Such a polarization encoding scheme also reduces memory read-out errors and alleviates the scalability limitations due to the optical insertion loss often seen in optical transmission encoding.
Shafiee, A.; Pasricha, S.; Nikdast, M. A survey on optical phase-change memory: The promise and challenges. IEEE Access 2023, 11, 11781–11803.
Cheng, Z. G.; Ríos, C.; Youngblood, N.; Wright, C. D.; Pernice, W. H. P.; Bhaskaran, H. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater. 2018, 30, 1802435.
Xia, J.; Wang, T. C.; Wang, Z. X.; Gong, J. J.; Dong, Y. X.; Yang, R.; Miao, X. S. Seven bit nonvolatile electrically programmable photonics based on phase-change materials for image recognition. ACS Photonics 2024, 11, 723–730.
Li, X.; Youngblood, N.; Ríos, C.; Cheng, Z. G.; Wright, C. D.; Pernice, W. H.; Bhaskaran, H. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 2019, 6, 1–6.
Pernice, W. H. P.; Bhaskaran, H. Photonic non-volatile memories using phase change materials. Appl. Phys. Lett. 2012, 101, 171101.
Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. P. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 2015, 9, 725–732.
Fang, Z. R.; Chen, R.; Zheng, J. J.; Khan, A. I.; Neilson, K. M.; Geiger, S. J.; Callahan, D. M.; Moebius, M. G.; Saxena, A.; Chen, M. E. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol. 2022, 17, 842–848.
Aryana, K.; Kim, H. J.; Popescu, C. C.; Vitale, S.; Bae, H. B.; Lee, T.; Gu, T.; Hu, J. J. Toward accurate thermal modeling of phase change material-based photonic devices. Small 2023, 19, 2304145.
Yu, J. B.; Luo, M. T.; Lv, Z. Y.; Huang, S. M.; Hsu, H. H.; Kuo, C. C.; Han, S. T.; Zhou, Y. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. Nanoscale 2020, 12, 23391–23423.
Shafiee, A.; Charbonnier, B.; Yao, J.; Pasricha, S.; Nikdast, M. Programmable phase change materials and silicon photonics co-integration for photonic memory applications: A systematic study. J. Opt. Microsyst. 2024, 4, 031208.
Li, X.; Liu, H. Y.; Ke, C. M.; Tang, W. Q.; Liu, M. Y.; Huang, F. H.; Wu, Y. P.; Wu, Z. M.; Kang, J. Y. Review of anisotropic 2D materials: Controlled growth, optical anisotropy modulation, and photonic applications. Laser Photonics Rev. 2021, 15, 2100322.
Chen, Z. G.; Shi, X. L.; Zhao, L. D.; Zou, J. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346.
Lin, Y. C.; Torsi, R.; Younas, R.; Hinkle, C. L.; Rigosi, A. F.; Hill, H. M.; Zhang, K. Y.; Huang, S. X.; Shuck, C. E.; Chen, C. et al. Recent advances in 2D material theory, synthesis, properties, and applications. ACS Nano 2023, 17, 9694–9747.
Li, F.; Wang, H. D.; Huang, R. J.; Chen, W. W.; Zhang, H. Recent advances in SnSe nanostructures beyond thermoelectricity. Adv. Funct. Mater. 2022, 32, 2200516.
Shi, W. R.; Gao, M. X.; Wei, J. P.; Gao, J. F.; Fan, C. W.; Ashalley, E.; Li, H. D.; Wang, Z. M. Tin selenide (SnSe): Growth, properties, and applications. Adv. Sci. 2018, 5, 1700602.
Shi, Q. W.; Parsonnet, E.; Cheng, X. X.; Fedorova, N.; Peng, R. C.; Fernandez, A.; Qualls, A.; Huang, X. X.; Chang, X.; Zhang, H. R. et al. The role of lattice dynamics in ferroelectric switching. Nat. Commun. 2022, 13, 1110.
Ramesh, R.; Manipatruni, S. Electric field control of magnetism. Proc. Roy. Soc. A 2021, 477, 20200942.
Jo, S. S.; Wu, C. M.; Zhu, L. H.; Yang, L.; Li, M.; Jaramillo, R. Photonic platforms using in-plane optical anisotropy of tin(II) selenide and black phosphorus. Adv. Photonics Res. 2021, 2, 2100176.
Wang, H.; Qian, X. F. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 2017, 4, 015042.
Hanakata, P. Z.; Carvalho, A.; Campbell, D. K.; Park, H. S. Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B 2016, 94, 035304.
Wang, J.; Jiang, C. Z.; Li, W. Q.; Xiao, X. H. Anisotropic low-dimensional materials for polarization-sensitive photodetectors: From materials to devices. Adv. Opt. Mater. 2022, 10, 2102436.
Kumar, M.; Rani, S.; Singh, Y.; Gour, K. S.; Singh, V. N. Tin-selenide as a futuristic material: Properties and applications. RSC Adv. 2021, 11, 6477–6503.
Xu, X. L.; Song, Q. J.; Wang, H. F.; Li, P.; Zhang, K.; Wang, Y. L.; Yuan, K.; Yang, Z. C.; Ye, Y.; Dai, L. In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces 2017, 9, 12601–12607.
Yang, S. X.; Liu, Y.; Wu, M. H.; Zhao, L. D.; Lin, Z. Y.; Cheng, H. C.; Wang, Y. L.; Jiang, C. B.; Wei, S. H.; Huang, L. et al. Highly anisotropic optical and electrical properties in layered SnSe. Nano Res. 2018, 11, 554–564.
Yinping, Z.; Chuang, Z.; Xinshi, G.; Xingang, L. A precise and simple method, the relative transmission fringe depth method, of determining the optical constants and thickness of thin semitransparent films. J. Phys. D: Appl. Phys., 1992, 25, 1004–1009.
Baban, C.; Rusu, G. G.; Nicolaescu, I. I.; Rusu, G. I. Optical properties of CdSe films deposited by the quasi-closed volume technique. J. Phys.: Condens. Matter 2000, 12, 7687–7697.
Tomlin, S. G. Optical reflection and transmission formulae for thin films. J. Phys. D: Appl. Phys. 1968, 1, 1667–1671.
Wu, Q.; Fang, Z. X.; Zhu, Y. L.; Song, H. Z.; Liu, Y.; Su, X.; Pan, D. F.; Gao, Y.; Wang, P.; Yan, S. C. et al. Controllable edge epitaxy of helical GeSe/GeS heterostructures. Nano Lett. 2022, 22, 5086–5093.
El-Nahass, M. M.; El-Deeb, A. F.; Metwally, H. S.; El-Sayed, H. E. A.; Hassanien, A. M. Influence of X-ray irradiation on the optical properties of iron(III) chloride tetraphenylporphyrin thin films. Solid State Sci. 2010, 12, 552–557.
Ranganathan, A. The levenberg-marquardt algorithm. Tutoral on LM Algorithm 2004, 11, 101–110.
John, K. J.; Pradeep, B.; Mathai, E. Tin selenide (SnSe) thin films prepared by reactive evaporation. J. Mater. Sci. 1994, 29, 1581–1583.
Murmann, H. Der spektrale Verlauf der anomalen optischen Konstanten dünnen Silbers. Z. Phys. 1936, 101, 643–648.
Halevi, P. Plane electromagnetic waves in material media: Are they transverse waves. Am. J. Phys. 1980, 48, 861–867.