In the context of 5G, the high-frequency cyclicity and inhomogeneity of heat flow put forward higher requirements for the thermal control system of electronic devices, and there is a great need for thermal management modules with fixed point and high efficiency to ensure the long-term development of electronic devices. Here, we selected four phase change molecules with significant differences in phase change temperatures to be composited with graphene aerogel (GA) to obtain Ei@GA, Tetra@GA, Octa@GA, and 1,10-Deca@GA. Compared with pure phase change molecules, the thermal conductivity has been increased by more than 20%, and the relative enthalpic efficiency is as high as 98.7% or more. Further, we assembled the four phase change composites by “reduction welding” to obtain the integrated, modular thermal management device M1-PCMs@GA. Simulation of inhomogeneous heat generation in electronics by building an inhomogeneous heat generation platform. Compared with the homogeneous modules M2-Ei@GA and M3-1,10-Deca@GA, the effective temperature control time of the customized module M1-PCMs@GA is extended by 100.0 and 394.3 s, respectively. Therefore, custom-assembled modular thermal management devices have important application prospects in the field of intelligent temperature control of electronic devices, and the idea of cascade assembly enriches the application functions and development direction of intelligent thermal managers.
Khan, J.; Momin, S. A.; Mariatti, M. A review on advanced carbon-based thermal interface materials for electronic devices. Carbon 2020, 168, 65–112.
Song, H. F.; Liu, J. M.; Liu, B. L.; Wu, J. Q.; Cheng, H. M.; Kang, F. Y. Two-dimensional materials for thermal management applications. Joule 2018, 2, 442–463.
Song, N.; Cao, D. L.; Luo, X.; Wang, Q.; Ding, P.; Shi, L. Y. Highly thermally conductive polypropylene/graphene composites for thermal management. Compos. Part A: Appl. Sci. Manuf. 2020, 135, 105912.
Wang, F. F.; Liu, Z. X.; Li, J. F.; Huang, J.; Fang, L.; Wang, X. F.; Dai, R. W.; Li, K. Y.; Zhang, R.; Yang, X. R. et al. Lateral heterostructure formed by highly thermally conductive fluorinated graphene for efficient device thermal management. Adv. Sci. 2024, 11, e2401586.
Li, S. W.; Hou, D. M.; Cui, Y. S.; Jia, S.; Lan, G.; Sun, W. L.; Li, G. Y.; Li, X.; Feng, W. Highly ordered carbon aerogels: Synthesis, structures, properties and applications. Carbon 2024, 218, 118669.
Y. X.; Ruan, K. P.; He, X. Y.; Tang, Y. S.; Guo, H.; Guo, Y. Q.; Qiu, H.; Gu, J. W. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem., Int. Ed. 2024, 63, e202401538.
Wang, W.; Gong, Y. F.; Ren, H. W.; Wang, J.; Li, Q. M. High-temperature failure mechanism and lifetime assessment of silicone gel package insulation for high-power electronic devices based on pyrolysis kinetics. IEEE Trans. Ind. Appl. 2024, 60, 1298–1309.
Zhang, Q. Y.; Feng, Z. F.; Zhang, J. X.; Guo, F. W.; Huang, S. Z.; Li, Z. Z. Design of a mini-channel heat sink for high-heat-flux electronic devices. Appl. Therm. Eng. 2022, 216, 119053.
Wang, H. R.; Zhang, H.; Peng, L. Q.; Yu, H. T.; Qin, M. M.; Feng, Y. Y.; Feng, W. A versatile multilayer interwoven order-structured carbon-based building block for efficient heat dissipation. Adv. Compos. Hybrid Mater. 2024, 7, 101.
Zhang, B.; Chen, X. M.; Pan, Z.; Liu, P.; Mao, M. M.; Song, K. X.; Mao, Z.; Sun, R.; Wang, D. W.; Zhang, S. J. Superior high-temperature energy density in molecular semiconductor/polymer all-organic composites. Adv. Funct. Mater. 2023, 33, 2210050.
Yu, H. T.; Peng, L. Q.; Chen, C.; Qin, M. M.; Feng, W. Regulatable orthotropic 3D hybrid continuous carbon networks for efficient Bi-directional thermal conduction. Nano-Micro Lett. 2024, 16, 198.
Gholipour, B. The promise of phase-change materials. Science 2019, 366, 186–187.
Shi, J. M.; Qin, M. L.; Aftab, W.; Zou, R. Q. Flexible phase change materials for thermal energy storage. Energy Storage Mater. 2021, 41, 321–342.
Wang, P.; Diao, X. M.; Chen, X. Intelligent phase change materials for long-duration thermal energy storage. Matter 2024, 7, 2716–2718.
Tao, J. L.; Luan, J. D.; Liu, Y.; Qu, D. Y.; Yan, Z.; Ke, X. Technology development and application prospects of organic-based phase change materials: An overview. Renewable Sustainable Energy Rev 2022, 159, 112175.
Xie, Y. F.; Yang, Y. P.; Liu, Y.; Wang, S. T.; Guo, X. X.; Wang, H.; Cao, D. P. Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv. Compos. Hybrid Mater. 2021, 4, 543–551.
Yang, J.; Zhou, Y. C.; Yang, L. Y.; Feng, C. P.; Bai, L.; Yang, M. B.; Yang, W. Exploring next-generation functional organic phase change composites. Adv. Funct. Mater. 2022, 32, 2200792.
Li, X. L.; Sheng, X. X.; Guo, Y. Q.; Lu, X.; Wu, H.; Chen, Y.; Zhang, L.; Gu, J. W. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 2021, 86, 171–179.
Fu, L. L.; Wang, Q. H.; Ye, R. D.; Fang, X. M.; Zhang, Z. G. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation. Renewable Energy 2017, 114, 733–743.
Liang, K. C.; Zhang, H.; Wang, Q. W.; Cheng, Z. L. PVA-assisted graphene aerogels composite phase change materials with anisotropic porous structure for thermal management. Carbon 2024, 230, 119639.
Ling, Z. Y.; Zhang, Z. G.; Shi, G. Q.; Fang, X. M.; Wang, L.; Gao, X. N.; Fang, Y. T.; Xu, T.; Wang, S. F.; Liu, X. H. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renewable Sustainable Energy Rev. 2014, 31, 427–438.
Liu, H.; Tian, X. X.; Ouyang, M. Z.; Wang, X.; Wu, D. Z.; Wang, X. D. Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy. Renewable Energy 2021, 179, 47–64.
Luo, Z.; Yang, D. Z.; Liu, J.; Zhao, H. Y.; Zhao, T. Y.; Li, B. X.; Yang, W. G.; Yu, Z. Z. Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 2023, 33, 2212032.
He, Q. X.; Qin, M. M.; Zhang, H.; Yue, J. W.; Peng, L. Q.; Liu, G. J.; Feng, Y. Y.; Feng, W. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Mater. Horiz. 2024, 11, 531–544.
Yun, J.; Yoo, Y. J.; Kim, H. R.; Song, Y. M. Recent progress in thermal management for flexible/wearable devices. Soft Sci. 2023, 3, 12.
Liang, C. B.; Huo, Q. Q.; Qi, J. M.; Zhang, Y. L.; Liu, C. L.; Liu, Y. Q.; Gu, J. W. Robust solid-solid phase change coating encapsulated glass fiber fabric with electromagnetic interference shielding for thermal management and message encryption. Adv. Funct. Mater. 2024, 34, 2409146.
Chen, Y. H.; Meng, Y.; Zhang, J. Y.; Xie, Y. H.; Guo, H.; He, M. K.; Shi, X. T.; Mei, Y.; Sheng, X. X.; Xie, D. L. Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nano-Micro Lett. 2024, 16, 196.
Tu, J. Y.; Li, H. R.; Zhang, J. J.; Hu, D.; Cai, Z. Q.; Yin, X. Z.; Dong, L. J.; Huang, L. P.; Xiong, C. X.; Jiang, M. Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv. Compos. Hybrid Mater. 2019, 2, 471–480.
Guo, H.; Hu, B. Y.; Shan, H. T.; Li, Z.; Qi, W. Y.; Li, B. A. Magnetically assembled flexible phase change composites with vertically aligned structures for thermal management and electromagnetic interference shielding. Chem. Eng. J. 2024, 495, 153361.
Hu, Y.; Zhang, M. Y.; Quan, B. Q.; Li, X. L.; Hu, X. P.; Wu, H.; Huang, X. R.; Lu, X.; Qu, J. P. Polyethylene glycol infiltrated biomass-derived porous carbon phase change composites for efficient thermal energy storage. Adv. Compos. Hybrid Mater. 2024, 7, 68.
Li, M. X.; Wang, X. J.; Shen, J. H.; Zhao, D.; Lian, J. Phase change-related thermal property characterization and enhancement in carbon-based organic phase change composites. Appl. Phys. Rev. 2024, 11, 021322.
Min, P.; Liu, J.; Li, X. F.; An, F.; Liu, P. F.; Shen, Y. X.; Koratkar, N.; Yu, Z. Z. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 2018, 28, 1805365.
Wang, C. H.; Lin, T.; Li, N.; Zheng, H. P. Heat transfer enhancement of phase change composite material: Copper foam/paraffin. Renewable Energy 2016, 96, 960–965.
Wang, J. X.; Mao, Y. F.; Miljkovic, N. Nano-enhanced graphite/phase change material/graphene composite for sustainable and efficient passive thermal management. Adv. Sci. 2024, 11, 2402190.
He, M. K.; Zhong, X.; Lu, X. H.; Hu, J. W.; Ruan, K. P.; Guo, H.; Zhang, Y. L.; Guo, Y. Q.; Gu, J. W. Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 2024, 36, 2410186.
Cao, Y.; Weng, M. M.; Mahmoud, M. H. H.; Elnaggar, A. Y.; Zhang, L.; El Azab, I. H.; Chen, Y.; Huang, M. N.; Huang, J. T.; Sheng, X. X. Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv. Compos. Hybrid Mater. 2022, 5, 1253–1267.
Wu, S.; Li, T. X.; Wu, M. Q.; Xu, J. X.; Hu, Y. H.; Chao, J. W.; Yan, T. S.; Wang, R. Z. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J. Mater. Chem. A 2020, 8, 20011–20020.
Wang, C. X.; Liu, Q.; Song, H. J.; Jiang, Q. L. Vacuum filtration method towards flexible thermoelectric films. Soft Sci. 2023, 3, 34.
Yue, Y.; Li, X. Y.; Zhao, Z. F.; Wang, H.; Guo, X. G. Stretchable flexible sensors for smart tires based on laser-induced graphene technology. Soft Sci. 2023, 3, 13.
Wu, Y. G.; Dong, S.; Li, X. J.; Wen, L. G.; Shen, H. W.; Li, M. J.; Liu, X.; Zhang, Y.; Zeng, G. L.; Zheng, J. Y. et al. A stretchable all-nanofiber iontronic pressure sensor. Soft Sci. 2023, 3, 33.
Yu, H. Y.; Gai, M. X.; Liu, L.; Chen, F. R.; Bian, J.; Huang, Y. A. Laser-induced direct graphene patterning: From formation mechanism to flexible applications. Soft Sci. 2023, 3, 4.
Sultanov, F.; Tatykayev, B.; Bakenov, Z.; Mentbayeva, A. The role of graphene aerogels in rechargeable batteries. Adv. Colloid Interface Sci. 2024, 331, 103249.
Wu, Y.; An, C.; Guo, Y. R.; Zong, Y. Y.; Jiang, N. S.; Zheng, Q. B.; Yu, Z. Z. Highly aligned graphene aerogels for multifunctional composites. Nano-Micro Lett. 2024, 16, 118.
Honda, S. A preliminary analysis of convection in a mantle with a heterogeneous distribution of heat-producing elements. Phys. Earth Planet. Inter. 1984, 34, 68–76.
Ping, P.; Zhang, Y.; Kong, D. P.; Du, J. Investigation on battery thermal management system combining phase changed material and liquid cooling considering non-uniform heat generation of battery. J. Energy Storage 2021, 36, 102448.
Huang, Y. Q.; Wei, C. F.; Fang, Y. D. Numerical investigation on optimal design of battery cooling plate for uneven heat generation conditions in electric vehicles. Appl. Therm. Eng. 2022, 211, 118476.
Wu, B.; Yufit, V.; Marinescu, M.; Offer, G. J.; Martinez-Botas, R. F.; Brandon, N. P. Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs. J. Power Sources 2013, 243, 544–554.
Yang, P.; Wu, B.; Tong, X.; Zeng, M.; Wang, Q. W.; Cheng, Z. L. Insight into heat transfer process of graphene aerogel composite phase change material. Energy 2023, 279, 128051.
Yang, H. S.; Li, Z. L.; Sun, G. Q.; Jin, X. T.; Lu, B.; Zhang, P. P.; Lin, T. Y.; Qu, L. T. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale. Adv. Funct. Mater. 2019, 29, 1901917.
Zhang, X. F.; Zhang, T. P.; Wang, Z.; Ren, Z. J.; Yan, S. K.; Duan, Y. X.; Zhang, J. M. Ultralight, superelastic, and fatigue-resistant graphene aerogel templated by graphene oxide liquid crystal stabilized air bubbles. ACS Appl. Mater. Interfaces 2019, 11, 1303–1310.
Fang, Z. H.; Luo, Y. F.; Wu, H. C.; Yan, L. J.; Zhao, F.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Mesoporous carbon nanotube aerogel-sulfur cathodes: A strategy to achieve ultrahigh areal capacity for lithium-sulfur batteries via capillary action. Carbon 2020, 166, 183–192.
Liyanage, C. D.; Kumar, H.; Perera, I.; Abeykoon, P. G.; Chen, F. Y.; Joya, J. S.; Suib, S. L.; Adamson, D. H. Synthesis of graphene oxide: Effect of sonication during oxidation. Carbon 2024, 223, 119047.
Ye, Y. S.; Huang, W. X.; Xu, R.; Xiao, X.; Zhang, W. B.; Chen, H.; Wan, J. Y.; Liu, F.; Lee, H. K.; Xu, J. W. et al. Cold-starting all-solid-state batteries from room temperature by thermally modulated current collector in sub-minute. Adv. Mater. 2022, 34, 2202848.
Zhu, P. Y.; Shen, M.; Xiao, S. H.; Zhang, D. Experimental study on the reducibility of graphene oxide by hydrazine hydrate. Phys. B: Condens. Matter 2011, 406, 498–502.
Liu, H. L.; Yang, C.; Wei, B.; Jin, L.; Alatas, A.; Said, A.; Tongay, S.; Yang, F.; Javey, A.; Hong, J. W. et al. Anomalously suppressed thermal conduction by electron-phonon coupling in charge-density-wave tantalum disulfide. Adv. Sci. 2020, 7, 1902071.
Nakashima, A.; Sagawa, Y.; Kimura, M. Temperature sensor using thin-film transistor. IEEE Sens. J. 2011, 11, 995–998.