Exosomes are important cancer biomarkers, however, the accuracy of exosome detection is greatly reduced due to heterogeneity of each exosome. Detecting exosomes with a larger field-of-view (FOV) might be a good solution. Compound eyes offer unique advantages such as a large field of view, low aberration, and high temporal resolution. Bionic compound eyes aim to replicate such features and have broad applications in fields like machine vision and medical imaging. In this paper, we propose the fabrication and application of a bionic compound eye for quantitative detection of exosomes, which allows fluorescence imaging of exosomes with an enlarged FOV, achieving a detection limit as low as 9.1 × 102 particles/mL. The bionic compound eye is formed by simply replicating a fly eye with polydimethylsiloxane (PDMS). To detect exosomes, a microfluidic array chip compatible with the compound eye is designed. Exosomes are captured on the chip using CD63 aptamers as the capturing probes. Another kind of fluorescent aptamers are utilized to recognize the captured exosomes. Large FOV dual-color fluorescence (LFDF) imaging of these exosomes is realized by inserting the compound eye between the objective and microfluidic chip. The advantages of LFDF imaging include, first, dual-color fluorescence imaging can guarantee that we are indeed imaging exosomes; second, large FOV can reduce the impact of heterogeneity of exosomes. Thus, the reliability of assay results would be greatly improved. As a proof-of-concept, breast cancer exosomes were used as the example. The experimental results showed that, compared to imaging without the compound eye, the standard deviation of LFDF imaging results decreased by approximately 38%. Thus, the detection errors could be greatly reduced. The feasibility of using LFDF imaging for subtype classification of breast cancer exosomes was also preliminarily validated. This technology offers a new, low-cost, and highly accurate solution for exosome based cancer diagnosis.
Azmi, A. S.; Bao, B.; Sarkar, F. H. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev. 2013, 32, 623–642.
Sandfeld-Paulsen, B.; Jakobsen, K. R.; Bæk, R.; Folkersen, B. H.; Rasmussen, T. R.; Meldgaard, P.; Varming, K.; Jørgensen, M. M.; Sorensen, B. S. Exosomal proteins as diagnostic biomarkers in lung cancer. J. Thorac. Oncol. 2016, 11, 1701–1710.
Joshi, G. K.; Deitz-McElyea, S.; Liyanage, T.; Lawrence, K.; Mali, S.; Sardar, R.; Korc, M. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano 2015, 9, 11075–11089.
Yu, Y. R.; Chen, D.; Yang, Y. B.; Yuan, Q. Recent progress in electrochemical biosensors based on DNA-functionalized nanomaterials. Nano Biomed. Eng. 2024, 16, 309–330.
Doyle, L. M.; Wang, M. Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019, 8, 727.
Willms, E.; Johansson, H. J.; Mäger, I.; Lee, Y.; Blomberg, K. E. M.; Sadik, M.; Alaarg, A.; Smith, C. I. E.; Lehtiö, J.; El Andaloussi, S. et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 2016, 6, 22519.
Kuang, J. J.; Fu, Z. B.; Sun, X. Z.; Lin, C. H.; Yang, S. L.; Xu, J. Y.; Zhang, M.; Zhang, H. Y.; Ning, F. H.; Hu, P. A colorimetric aptasensor based on a hemin/EpCAM aptamer DNAzyme for sensitive exosome detection. Analyst 2022, 147, 5054–5061.
Park, J.; Park, J. S.; Huang, C. H.; Jo, A.; Cook, K.; Wang, R.; Lin, H. Y.; Van Deun, J.; Li, H. Y.; Min, J. et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat. Biomed. Eng. 2021, 5, 678–689.
Meng, D.; Ma, W.; Wu, X. L.; Xu, C. L.; Kuang, H. DNA-driven two-layer core-satellite gold nanostructures for ultrasensitive MicroRNA detection in living cells. Small 2020, 16, 2000003.
Li, B.; Liu, C. C.; Pan, W. L.; Shen, J. L.; Guo, J. Y.; Luo, T. T.; Feng, J. J.; Situ, B.; An, T. X.; Zhang, Y. et al. Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosens. Bioelectron. 2020, 168, 112520.
Jiang, J. L.; Cui, X. Y.; Huang, Y. X.; Yan, D. M.; Wang, B. S.; Yang, Z. Y.; Chen, M. R.; Wang, J. H.; Zhang, Y. N.; Liu, G. et al. Advances and prospects in integrated nano-oncology. Nano Biomed. Eng. 2024, 16, 152–187.
Zhang, Y.; Tong, X. D.; Yang, L.; Yin, R. L.; Li, Y.; Zeng, D.; Wang, X. Y.; Deng, K. A herringbone mixer based microfluidic device HBEXO-chip for purifying tumor-derived exosomes and establishing miRNA signature in pancreatic cancer. Sens. Actuators B: Chem. 2021, 332, 129511.
Zhou, S. S.; Hu, T.; Zhang, F.; Tang, D. Z.; Li, D. K.; Cao, J.; Wei, W.; Wu, Y. F.; Liu, S. Q. Integrated microfluidic device for accurate extracellular vesicle quantification and protein markers analysis directly from human whole blood. Anal. Chem. 2020, 92, 1574–1581.
Lee, G. J.; Choi, C.; Kim, D. H.; Song, Y. M. Bioinspired artificial eyes: Optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 2018, 28, 1705202.
Wu, S. D.; Jiang, T.; Zhang, G. X.; Schoenemann, B.; Neri, F.; Zhu, M.; Bu, C. G.; Han, J. D.; Kuhnert, K. D. Artificial compound eye: A survey of the state-of-the-art. Artif. Intell. Rev. 2017, 48, 573–603.
Li, H. F.; Gong, X. W.; Ni, Q. L.; Zhao, J. L.; Zhang, H. S.; Wang, T. S.; Yu, W. X. Replication and characterization of the compound eye of a fruit fly for imaging purpose. Appl. Phys. Lett. 2014, 105, 143705.
Zhang, H.; Li, L.; McCray, D. L.; Scheiding, S.; Naples, N. J.; Gebhardt, A.; Risse, S.; Eberhardt, R.; Tünnermann, A.; Yi, A. Y. Development of a low cost high precision three-layer 3D artificial compound eye. Opt. Express 2013, 21, 22232–22245.
Tanida, J.; Shogenji, R.; Kitamura, Y.; Yamada, K.; Miyamoto, M.; Miyatake, S. Color imaging with an integrated compound imaging system. Opt. Express 2003, 11, 2109–2117.
Duparré, J.; Dannberg, P.; Schreiber, P.; Bräuer, A.; Tünnermann, A. Thin compound-eye camera. Appl. Opt. 2005, 44, 2949–2956.
Cheng, Y.; Cao, J.; Zhang, Y. K.; Hao, Q. Review of state-of-the-art artificial compound eye imaging systems. Bioinspir. Biomim. 2019, 14, 031002.
Kamal, W.; Lin, J. D.; Elston, S. J.; Ali, T.; Castrejón-Pita, A. A.; Morris, S. M. Electrically tunable printed bifocal liquid crystal microlens arrays. Adv. Mater. Interfaces 2020, 7, 2000578.
Ma, Z. C.; Hu, X. Y.; Zhang, Y. L.; Liu, X. Q.; Hou, Z. S.; Niu, L. G.; Zhu, L.; Han, B.; Chen, Q. D.; Sun, H. B. Smart compound eyes enable tunable imaging. Adv. Funct. Mater. 2019, 29, 1903340.
Cao, J. J.; Hou, Z. S.; Tian, Z. N.; Hua, J. G.; Zhang, Y. L.; Chen, Q. D. Bioinspired zoom compound eyes enable variable-focus imaging. ACS Appl. Mater. Interfaces 2020, 12, 10107–10117.
Cogal, O.; Leblebici, Y. An insect eye inspired miniaturized multi-camera system for endoscopic imaging. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 212–224.
Shi, C. Y.; Wang, Y. Y.; Liu, C. Y.; Wang, T. S.; Zhang, H. X.; Liao, W. X.; Xu, Z. J.; Yu, W. X. SCECam: A spherical compound eye camera for fast location and recognition of objects at a large field of view. Opt. Express 2017, 25, 32333–32345.
Cao, A. X.; Pang, H.; Zhang, M.; Shi, L. F.; Deng, Q. L.; Hu, S. Design and fabrication of an artificial compound eye for multi-spectral imaging. Micromachines 2019, 10, 208.
Shen, M. J.; Di, K. L.; He, H. Z.; Xia, Y. Y.; Xie, H.; Huang, R. R.; Liu, C.; Yang, M.; Zheng, S. Y.; He, N. Y. et al. Progress in exosome associated tumor markers and their detection methods. Mol. Biomed. 2020, 1, 3.
Kim, S.; Choi, B. H.; Shin, H.; Kwon, K.; Lee, S. Y.; Yoon, H. B.; Kim, H. K.; Choi, Y. Plasma exosome analysis for protein mutation identification using a combination of raman spectroscopy and deep learning. ACS Sens. 2023, 8, 2391–2400.
Wu, Y.; Gao, Z. B.; Chai, Y. R.; Zhang, A. A.; He, S. T.; Liu, X.; Yuan, H. J.; Tan, L. L.; Ding, L. H.; Wu, Y. J. One-step and label-free ratiometric fluorescence assay for the detection of plasma exosome towards cancer diagnosis. Talanta 2024, 271, 125700.
Cui, H. Y.; Zheng, T. F.; Qian, N. N.; Fu, X. Q.; Li, A. J.; Xing, S.; Wang, X. F. Aptamer-functionalized magnetic Ti3C2 based nanoplatform for simultaneous enrichment and detection of exosomes. Small 2024, 20, 2402434.
Liu, M. X.; Zhang, H.; Zhang, X. W.; Chen, S.; Yu, Y. L.; Wang, J. H. Nanozyme sensor array plus solvent-mediated signal amplification strategy for ultrasensitive ratiometric fluorescence detection of exosomal proteins and cancer identification. Anal. Chem. 2021, 93, 9002–9010.
Ding, L. H.; Liu, L. E.; He, L. L.; Effah, C. Y.; Yang, R. Y.; Ouyang, D. X.; Jian, N. G.; Liu, X.; Wu, Y. J.; Qu, L. B. Magnetic-nanowaxberry-based simultaneous detection of exosome and exosomal proteins for the intelligent diagnosis of cancer. Anal. Chem. 2021, 93, 15200–15208.
Meng, X. D.; Lv, H. Y.; Zhang, X. J.; Zhang, M. Q. Dual signal Amplification-Mediated Aptamer-Based electrochemical biosensor for sensitive detection of exosomes. Microchem. J. 2024, 207, 112095.