The COVID-19 pandemic has underscored the significance of antibacterial protective materials. Utilizing high-performance antibacterial masks proves to be effective in preventing the spread of respiratory diseases. Herein, we demonstrate a self-cleaning antibacterial mask constructed from the fiber@ZnO composite membrane, utilizing the strong interfacial adhesion of polydopamine (PDA). With a ZnO NPs immersion solution concentration of 1.0 mg/mL, the ZnO NP content in fiber@ZnO reaches 6.5%. The fiber@ZnO demonstrates bactericidal rates exceeding 99% against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, and exhibits an inhibition rate exceeding 99.99% against the H1N1 influenza virus. The hydrogen bonding and electrostatic interaction between ZnO nanoparticles (NPs) and PDA can keep a stable combination of NPs and fiber. Antibacterial masks constructed by the fiber@ZnO composite membrane exhibit superior self-cleaning performance and effectively eliminate pathogenic bacteria in aerosols compared with commercial N95 masks. The mussel-bionic strategy presents a viable approach for developing novel antibacterial fibers, with significant application potential in reducing the risk of human infection and preventing the re-transmission of pathogens.
Jin, X. Y.; Gao, F.; Qin, M. X.; Yu, Y. P.; Zhao, Y.; Shao, T. Y.; Chen, C.; Zhang, W. H.; Xie, B.; Xiong, Y. J. et al. How to make personal protective equipment spontaneously and continuously antimicrobial (incorporating oxidase-like catalysts). ACS Nano 2022, 16, 7755–7771.
Qian, J.; Dong, Q.; Chun, K.; Zhu, D. Y.; Zhang, X.; Mao, Y. M.; Culver, J. N.; Tai, S.; German, J. R.; Dean, D. P. et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 2023, 18, 168–176.
Wang, Y.; Cao, R.; Wang, C.; Song, X. Y.; Wang, R. N.; Liu, J. C.; Zhang, M. M.; Huang, J. Y.; You, T. T.; Zhang, Y. H. et al. In situ embedding hydrogen-bonded organic frameworks nanocrystals in electrospinning nanofibers for ultrastable broad-spectrum antibacterial activity. Adv. Funct. Mater. 2023, 33, 2214388.
Heng, W. Z.; Yin, S. K.; Min, J. H.; Wang, C. R.; Han, H.; Shirzaei Sani, E.; Li, J. H.; Song, Y.; Rossiter, H. B.; Gao, W. A smart mask for exhaled breath condensate harvesting and analysis. Science 2024, 385, 954–961.
Zhao, T. N.; Xiao, X.; Wu, Y. C.; Ma, J. J.; Li, Y.; Lu, C. Y.; Shokoohi, C.; Xu, Y. Q.; Zhang, X. M.; Zhang, Y. Z. et al. Tracing the flu symptom progression via a smart face mask. Nano Lett. 2023, 23, 8960–8969.
Luo, X. M.; Yin, C. Y.; Ji, L. F.; Feng, J. Y.; Zhang, P.; Wang, X. C.; Ma, Y.; Liu, X. H. An antimicrobial polymer brush coating to fabricate high-performance, durable, self-sterilization, and recyclable face masks. Chem. Mater. 2023, 35, 9245–9256.
Sim, M. T.; Ee, Z. Y.; Lim, Y. H.; Sia, T. S.; Ong, D. T. K.; Koay, J. S. C.; Goh, B. T.; Yong, Y. S.; Aw, K. C.; Tan, S. T. et al. Instant disinfecting face masks utilizing electroporation powered by respiration-driven triboelectric nanogenerators. Adv. Funct. Mater. 2024, 34, 2410062.
Zhong, H.; Zhu, Z. R.; Lin, J.; Cheung, C. F.; Lu, V. L.; Yan, F.; Chan, C. Y.; Li, G. J. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213–6221.
Li, P.; Li, J. Z.; Feng, X.; Li, J.; Hao, Y. C.; Zhang, J. W.; Wang, H.; Yin, A. X.; Zhou, J. W.; Ma, X. J. et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177.
Huang, L. B.; Xu, S. Y.; Wang, Z. Y.; Xue, K.; Su, J. J.; Song, Y.; Chen, S. J.; Zhu, C. L.; Tang, B. Z.; Ye, R. Q. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano 2020, 14, 12045–12053.
Yu, D. M.; Liu, L. F.; Yu, J. Y.; Si, Y.; Ding, B. Meta-aerogel electric trap enables instant and continuable pathogen killing in face masks. ACS Nano 2023, 17, 20601–20610.
Cimini, A.; Imperi, E.; Picano, A.; Rossi, M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. Appl. Mater. Today 2023, 32, 101833.
Huang, H. Y.; Park, H.; Liu, Y. H.; Huang, J. X. On-mask chemical modulation of respiratory droplets. Matter 2020, 3, 1791–1810.
Park, S. J.; Lee, C. H.; Kim, Y.; Ko, J. H.; Kim, T.; Kim, S. J.; Nahm, S.; Cho, H.; Moon, M. W. M. Multiscale landscaping of droplet wettability on fibrous layers of facial masks. Proc. Natl. Acad. Sci. USA 2022, 119, e2209586119.
Peng, Z. H.; Shi, J. H.; Xiao, X.; Hong, Y.; Li, X. M.; Zhang, W. W.; Cheng, Y. L.; Wang, Z. K.; Li, W. J.; Chen, J. et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat. Commun. 2022, 13, 7835.
Tuñón-Molina, A.; Takayama, K.; Redwan, E. M.; Uversky, V. N.; Andrés, J.; Serrano-Aroca, Á. Protective face masks: Current status and future trends. ACS Appl. Mater. Interfaces 2021, 13, 56725–56751.
Wang, Q. F.; Wei, Y. Z.; Li, W. B.; Luo, X. Z.; Zhang, X. Y.; Di, J. C.; Wang, G. Q.; Yu, J. H. Polarity-dominated Stable N97 respirators for airborne virus capture based on nanofibrous membranes. Angew. Chem., Int. Ed. 2021, 60, 23756–23762.
Zhou, Z. Q.; Wang, D.; Pan, Z. Y.; You, T. L.; Xu, G. L.; Liang, Y.; Tang, M. Bioinspired structures made of silicone nanofilaments for upcycling waste masks to reusable N95 respirators. Nano Lett. 2024, 24, 4415–4422.
Chen, M. X.; Hu, Q.; Wang, X. Y.; Zhang, W. A review on recent trends of the antibacterial nonwovens air filter materials: Classification, fabrication, and application. Sep. Purif. Technol. 2024, 330, 125404.
Deng, W.; Sun, Y. J.; Yao, X. X.; Subramanian, K.; Ling, C.; Wang, H. B.; Chopra, S. S.; Xu, B. B.; Wang, J. X.; Chen, J. F. et al. Masks for COVID-19. Adv. Sci. 2022, 9, 2102189.
Pullangott, G.; Kannan, U.; S, G.; Kiran, D. V.; Maliyekkal, S. M. A comprehensive review on antimicrobial face masks: An emerging weapon in fighting pandemics. RSC Adv. 2021, 11, 6544–6576.
Hossain, T.; Shahid, A.; Mahmud, N.; Habib, A.; Rana, M.; Khan, S. A.; Hossain, D. Research and application of polypropylene: A review. Discover Nano 2024, 19, 2.
Gao, J. F.; Luo, J. C.; Wang, L.; Huang, X. W.; Wang, H.; Song, X.; Hu, M. J.; Tang, L. C.; Xue, H. G. Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 2019, 364, 493–502.
Yaman, N.; Özdoğan, E.; Seventekin, N.; Ayhan, H. Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff. Appl. Surf. Sci. 2009, 255, 6764–6770.
Cheng, W.; Zeng, X. W.; Chen, H. Z.; Li, Z. M.; Zeng, W. F.; Mei, L.; Zhao, Y. L. Versatile polydopamine platforms: Synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 2019, 13, 8537–8565.
Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.
Yu, J.; Wei, W.; Danner, E.; Ashley, R. K.; Israelachvili, J. N.; Waite, J. H. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 2011, 7, 588–590.
Ma, Z. W.; Feng, J. B.; Huo, S. Q.; Sun, Z. Q.; Bourbigot, S.; Wang, H.; Gao, J. F.; Tang, L. C.; Zheng, W.; Song, P. A. Mussel-inspired, self-healing, highly effective fully polymeric fire-retardant coatings enabled by group synergy. Adv. Mater. 2024, 36, 2410453.
Fu, Y.; Yang, L.; Zhang, J. H.; Hu, J. F.; Duan, G. G.; Liu, X. H.; Li, Y. W.; Gu, Z. P. Polydopamine antibacterial materials. Mater. Horiz. 2021, 8, 1618–1633.
Faure, E.; Falentin-Daudré, C.; Jérôme, C.; Lyskawa, J.; Fournier, D.; Woisel, P.; Detrembleur, C. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 2013, 38, 236–270.
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.
Zhang, W.; Wang, R. X.; Sun, Z. M.; Zhu, X. W.; Zhao, Q.; Zhang, T. F.; Cholewinski, A.; Yang, F.; Zhao, B. X.; Pinnaratip, R. et al. Catechol-functionalized hydrogels: Biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 2020, 49, 433–464.
Borisov, V. B.; Siletsky, S. A.; Nastasi, M. R.; Forte, E. ROS defense systems and terminal oxidases in bacteria. Antioxidants 2021, 10, 839.
Makabenta, J. M. V.; Nabawy, A.; Li, C. H.; Schmidt-Malan, S.; Patel, R.; Rotello, V. M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23–36.
Xie, M. M.; Gao, M.; Yun, Y.; Malmsten, M.; Rotello, V. M.; Zboril, R.; Akhavan, O.; Kraskouski, A.; Amalraj, J.; Cai, X. M. et al. Antibacterial nanomaterials: Mechanisms, impacts on antimicrobial resistance and design principles. Angew. Chem., Int. Ed. 2023, 62, e202217345.
Zhang, J. K.; Su, P. D.; Chen, H. H.; Qiao, M.; Yang, B.; Zhao, X. Impact of reactive oxygen species on cell activity and structural integrity of Gram-positive and Gram-negative bacteria in electrochemical disinfection system. Chem. Eng. J. 2023, 451, 138879.
Wang, Y.; Zhao, W. B.; Li, F. K.; Chang, S. L.; Cao, Q.; Guo, R.; Song, S. Y.; Liu, K. K.; Shan, C. X. Engineering sizable and broad-spectrum antibacterial fabrics through hydrogen bonding interaction and electrostatic interaction. ACS Appl. Mater. Interfaces 2024, 16, 8321–8332.
Wang, Y.; Liu, K. K.; Zhao, W. B.; Sun, J. L.; Chen, X. X.; Zhang, L. L.; Cao, Q.; Zhou, R.; Dong, L.; Shan, C. X. Antibacterial fabrics based on synergy of piezoelectric effect and physical interaction. Nano Today 2023, 48, 101737.
Jiang, L. Y.; Zhang, S. F.; Liang, Y. C.; Zhou, Y. C.; Shao, H. C.; Wang, H. Y.; Liu, K. K.; Shan, C. X. Advancing programmable information encryption circuits through colorful phosphorescent carbon nanodots with versatile lifetimes. Adv. Opt. Mater. 2024, 12, 2401494.
Zhao, W. B.; Du, M. R.; Liu, K. K.; Zhou, R.; Ma, R. N.; Jiao, Z.; Zhao, Q.; Shan, C. X. Hydrophilic ZnO nanoparticles@calcium alginate composite for water purification. ACS Appl. Mater. Interfaces 2020, 12, 13305–13315.
Zhou, R.; Sui, L. Z.; Liu, X. B.; Liu, K. K.; Guo, D. Y.; Zhao, W. B.; Song, S. Y.; Lv, C. F.; Chen, S.; Jiang, T. C. et al. Multiphoton excited singlet/triplet mixed self-trapped exciton emission. Nat. Commun. 2023, 14, 1310.
Zhu, Y. W.; Sun, Y. J.; Wang, J. L.; Yu, B. R. Antimicrobial and antifouling surfaces through polydopamine bio-inspired coating. Rare Met. 2022, 41, 499–518.
Zheng, N.; Huang, Y. D.; Sun, W. F.; Du, X. S.; Liu, H. Y.; Moody, S.; Gao, J. F.; Mai, Y. W. In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates. Carbon 2016, 110, 69–78.
Li, M.; Zhang, S. B.; Li, L. W.; Han, J. Y.; Zhu, X. L.; Ge, Q. F.; Wang, H. Construction of highly active and selective polydopamine Modified hollow ZnO/Co3O4 p-n heterojunction catalyst for photocatalytic CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 11465–11476.
Liang, Y. C.; Shao, H. C.; Liu, K. K.; Cao, Q.; Deng, Y.; Hu, Y. W.; Yang, K.; Jiang, L. Y.; Shan, C. X.; Kuang, L. M. et al. Visualizing motion trail via phosphorescence carbon nanodots-based delay display array. ACS Appl. Mater. Interfaces 2024, 16, 26643–26652.
Jiang, L. Y.; Zhou, Y. C.; Zhang, S. F.; Shao, H. C.; Liang, Y. C. Time division colorful multiplexing based on carbon nanodots with modifiable colors and lifetimes. Nano Lett. 2024, 24, 8418–8426.
Cao, Q.; Liu, K. K.; Liang, Y. C.; Song, S. Y.; Deng, Y.; Mao, X.; Wang, Y.; Zhao, W. B.; Lou, Q.; Shan, C. X. Brighten triplet excitons of carbon nanodots for multicolor phosphorescence films. Nano Lett. 2022, 22, 4097–4105.
Li, K.; Skolrood, L. N.; Aytug, T.; Tekinalp, H.; Ozcan, S. Strong and tough cellulose nanofibrils composite films: Mechanism of synergetic effect of hydrogen bonds and ionic interactions. ACS Sustain. Chem. Eng. 2019, 7, 14341–14346.
Fu, J. W.; Chen, Z. H.; Wang, M. H.; Liu, S. J.; Zhang, J. H.; Zhang, J. N.; Han, R. P.; Xu, Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53–61.
Li, J.; Tan, L.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Chu, P. K.; Wu, S. L. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano 2017, 11, 11250–11263.
Liu, M.; Peng, Y.; Nie, Y. B.; Liu, P.; Hu, S.; Ding, J. S.; Zhou, W. H. Co-delivery of doxorubicin and DNAzyme using ZnO@polydopamine core–shell nanocomposites for chemo/gene/photothermal therapy. Acta Biomater. 2020, 110, 242–253.
Ye, Q.; Zhou, F.; Liu, W. M. Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40, 4244–4258.
Zhao, W. B.; Liu, K. K.; Wang, Y.; Li, F. K.; Guo, R.; Song, S. Y.; Shan, C. X. Antibacterial carbon dots: Mechanisms, design, and applications. Adv. Healthcare Mater. 2023, 12, 2300324.
Zhou, R.; Cui, D. J.; Zhao, Q.; Liu, K. K.; Zhao, W. B.; Liu, Q.; Ma, R. N.; Jiao, Z.; Dong, L.; Shan, C. X. Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chem. 2022, 388, 132994.
Liang, Y. C.; Shao, H. C.; Liu, K. K.; Cao, Q.; Jiang, L. Y.; Shan, C. X.; Kuang, L. M.; Jing, H. Thermally enhanced phosphorescent carbon nanodots for monitoring cold-chain logistics. Small 2024, 20, 2312218.
Liang, Y. C.; Cao, Q.; Deng, Y.; Wang, Y.; Liu, K. K.; Shan, C. X. Triggering triplet excitons of carbon nanodots through nanospace domain confinement for multicolor phosphorescence in aqueous solution. Nano Res. 2024, 17, 6534–6543.
Qin, J. X.; Yang, X. G.; Shen, C. L.; Chang, Y.; Deng, Y.; Zhang, Z. F.; Liu, H.; Lv, C. F.; Li, Y. Z.; Zhang, C. et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy 2022, 101, 107549.
Chen, Y. X.; Xu, X. M.; Wang, Z. W.; Hua, G. Y.; Zhang, Y. H.; Liu, F. Q. Dehydration-modulated pomelo peel cellulose nanofiber interlayer customized polyamide membrane with highly uniform pores for efficient nanofiltration. Chem. Eng. J. 2024, 496, 154128.
Guillen-Burrieza, E.; Servi, A.; Lalia, B. S.; Arafat, H. A. Membrane structure and surface morphology impact on the wetting of MD membranes. J. Membr. Sci. 2015, 483, 94–103.