PDF (15.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Mussel-bionic fiber@ZnO composite membrane for self-cleaning antibacterial mask

Yong Wang1Wen-Bo Zhao1Fu-Kui Li1Shulong Chang1Bao-Shuai Shi1Lin Jia1Kai-Kai Liu1,2 ()Chong-Xin Shan1()
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China
Institute of Quantum Materials and Physics Henan Academy of Sciences, Zhengzhou 450046, China
Show Author Information

Graphical Abstract

View original image Download original image
The self-cleaning antibacterial mask constructed from the fiber@ZnO composite membrane and inspired by mussel adhesion, demonstrates excellent antibacterial and antiviral performance.

Abstract

The COVID-19 pandemic has underscored the significance of antibacterial protective materials. Utilizing high-performance antibacterial masks proves to be effective in preventing the spread of respiratory diseases. Herein, we demonstrate a self-cleaning antibacterial mask constructed from the fiber@ZnO composite membrane, utilizing the strong interfacial adhesion of polydopamine (PDA). With a ZnO NPs immersion solution concentration of 1.0 mg/mL, the ZnO NP content in fiber@ZnO reaches 6.5%. The fiber@ZnO demonstrates bactericidal rates exceeding 99% against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, and exhibits an inhibition rate exceeding 99.99% against the H1N1 influenza virus. The hydrogen bonding and electrostatic interaction between ZnO nanoparticles (NPs) and PDA can keep a stable combination of NPs and fiber. Antibacterial masks constructed by the fiber@ZnO composite membrane exhibit superior self-cleaning performance and effectively eliminate pathogenic bacteria in aerosols compared with commercial N95 masks. The mussel-bionic strategy presents a viable approach for developing novel antibacterial fibers, with significant application potential in reducing the risk of human infection and preventing the re-transmission of pathogens.

Electronic Supplementary Material

Download File(s)
7205_ESM.pdf (1.6 MB)

References

[1]

Jin, X. Y.; Gao, F.; Qin, M. X.; Yu, Y. P.; Zhao, Y.; Shao, T. Y.; Chen, C.; Zhang, W. H.; Xie, B.; Xiong, Y. J. et al. How to make personal protective equipment spontaneously and continuously antimicrobial (incorporating oxidase-like catalysts). ACS Nano 2022, 16, 7755–7771.

[2]

Qian, J.; Dong, Q.; Chun, K.; Zhu, D. Y.; Zhang, X.; Mao, Y. M.; Culver, J. N.; Tai, S.; German, J. R.; Dean, D. P. et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 2023, 18, 168–176.

[3]

Wang, Y.; Cao, R.; Wang, C.; Song, X. Y.; Wang, R. N.; Liu, J. C.; Zhang, M. M.; Huang, J. Y.; You, T. T.; Zhang, Y. H. et al. In situ embedding hydrogen-bonded organic frameworks nanocrystals in electrospinning nanofibers for ultrastable broad-spectrum antibacterial activity. Adv. Funct. Mater. 2023, 33, 2214388.

[4]

Heng, W. Z.; Yin, S. K.; Min, J. H.; Wang, C. R.; Han, H.; Shirzaei Sani, E.; Li, J. H.; Song, Y.; Rossiter, H. B.; Gao, W. A smart mask for exhaled breath condensate harvesting and analysis. Science 2024, 385, 954–961.

[5]

Zhao, T. N.; Xiao, X.; Wu, Y. C.; Ma, J. J.; Li, Y.; Lu, C. Y.; Shokoohi, C.; Xu, Y. Q.; Zhang, X. M.; Zhang, Y. Z. et al. Tracing the flu symptom progression via a smart face mask. Nano Lett. 2023, 23, 8960–8969.

[6]

Luo, X. M.; Yin, C. Y.; Ji, L. F.; Feng, J. Y.; Zhang, P.; Wang, X. C.; Ma, Y.; Liu, X. H. An antimicrobial polymer brush coating to fabricate high-performance, durable, self-sterilization, and recyclable face masks. Chem. Mater. 2023, 35, 9245–9256.

[7]

Sim, M. T.; Ee, Z. Y.; Lim, Y. H.; Sia, T. S.; Ong, D. T. K.; Koay, J. S. C.; Goh, B. T.; Yong, Y. S.; Aw, K. C.; Tan, S. T. et al. Instant disinfecting face masks utilizing electroporation powered by respiration-driven triboelectric nanogenerators. Adv. Funct. Mater. 2024, 34, 2410062.

[8]

Zhong, H.; Zhu, Z. R.; Lin, J.; Cheung, C. F.; Lu, V. L.; Yan, F.; Chan, C. Y.; Li, G. J. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213–6221.

[9]

Li, P.; Li, J. Z.; Feng, X.; Li, J.; Hao, Y. C.; Zhang, J. W.; Wang, H.; Yin, A. X.; Zhou, J. W.; Ma, X. J. et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177.

[10]

Huang, L. B.; Xu, S. Y.; Wang, Z. Y.; Xue, K.; Su, J. J.; Song, Y.; Chen, S. J.; Zhu, C. L.; Tang, B. Z.; Ye, R. Q. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano 2020, 14, 12045–12053.

[11]

Yu, D. M.; Liu, L. F.; Yu, J. Y.; Si, Y.; Ding, B. Meta-aerogel electric trap enables instant and continuable pathogen killing in face masks. ACS Nano 2023, 17, 20601–20610.

[12]

Cimini, A.; Imperi, E.; Picano, A.; Rossi, M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. Appl. Mater. Today 2023, 32, 101833.

[13]

Huang, H. Y.; Park, H.; Liu, Y. H.; Huang, J. X. On-mask chemical modulation of respiratory droplets. Matter 2020, 3, 1791–1810.

[14]

Park, S. J.; Lee, C. H.; Kim, Y.; Ko, J. H.; Kim, T.; Kim, S. J.; Nahm, S.; Cho, H.; Moon, M. W. M. Multiscale landscaping of droplet wettability on fibrous layers of facial masks. Proc. Natl. Acad. Sci. USA 2022, 119, e2209586119.

[15]

Peng, Z. H.; Shi, J. H.; Xiao, X.; Hong, Y.; Li, X. M.; Zhang, W. W.; Cheng, Y. L.; Wang, Z. K.; Li, W. J.; Chen, J. et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat. Commun. 2022, 13, 7835.

[16]

Tuñón-Molina, A.; Takayama, K.; Redwan, E. M.; Uversky, V. N.; Andrés, J.; Serrano-Aroca, Á. Protective face masks: Current status and future trends. ACS Appl. Mater. Interfaces 2021, 13, 56725–56751.

[17]

Wang, Q. F.; Wei, Y. Z.; Li, W. B.; Luo, X. Z.; Zhang, X. Y.; Di, J. C.; Wang, G. Q.; Yu, J. H. Polarity-dominated Stable N97 respirators for airborne virus capture based on nanofibrous membranes. Angew. Chem., Int. Ed. 2021, 60, 23756–23762.

[18]

Zhou, Z. Q.; Wang, D.; Pan, Z. Y.; You, T. L.; Xu, G. L.; Liang, Y.; Tang, M. Bioinspired structures made of silicone nanofilaments for upcycling waste masks to reusable N95 respirators. Nano Lett. 2024, 24, 4415–4422.

[19]

Chen, M. X.; Hu, Q.; Wang, X. Y.; Zhang, W. A review on recent trends of the antibacterial nonwovens air filter materials: Classification, fabrication, and application. Sep. Purif. Technol. 2024, 330, 125404.

[20]

Deng, W.; Sun, Y. J.; Yao, X. X.; Subramanian, K.; Ling, C.; Wang, H. B.; Chopra, S. S.; Xu, B. B.; Wang, J. X.; Chen, J. F. et al. Masks for COVID-19. Adv. Sci. 2022, 9, 2102189.

[21]

Pullangott, G.; Kannan, U.; S, G.; Kiran, D. V.; Maliyekkal, S. M. A comprehensive review on antimicrobial face masks: An emerging weapon in fighting pandemics. RSC Adv. 2021, 11, 6544–6576.

[22]

Hossain, T.; Shahid, A.; Mahmud, N.; Habib, A.; Rana, M.; Khan, S. A.; Hossain, D. Research and application of polypropylene: A review. Discover Nano 2024, 19, 2.

[23]

Gao, J. F.; Luo, J. C.; Wang, L.; Huang, X. W.; Wang, H.; Song, X.; Hu, M. J.; Tang, L. C.; Xue, H. G. Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 2019, 364, 493–502.

[24]

Yaman, N.; Özdoğan, E.; Seventekin, N.; Ayhan, H. Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff. Appl. Surf. Sci. 2009, 255, 6764–6770.

[25]

Cheng, W.; Zeng, X. W.; Chen, H. Z.; Li, Z. M.; Zeng, W. F.; Mei, L.; Zhao, Y. L. Versatile polydopamine platforms: Synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 2019, 13, 8537–8565.

[26]

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

[27]

Yu, J.; Wei, W.; Danner, E.; Ashley, R. K.; Israelachvili, J. N.; Waite, J. H. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 2011, 7, 588–590.

[28]

Ma, Z. W.; Feng, J. B.; Huo, S. Q.; Sun, Z. Q.; Bourbigot, S.; Wang, H.; Gao, J. F.; Tang, L. C.; Zheng, W.; Song, P. A. Mussel-inspired, self-healing, highly effective fully polymeric fire-retardant coatings enabled by group synergy. Adv. Mater. 2024, 36, 2410453.

[29]

Fu, Y.; Yang, L.; Zhang, J. H.; Hu, J. F.; Duan, G. G.; Liu, X. H.; Li, Y. W.; Gu, Z. P. Polydopamine antibacterial materials. Mater. Horiz. 2021, 8, 1618–1633.

[30]

Faure, E.; Falentin-Daudré, C.; Jérôme, C.; Lyskawa, J.; Fournier, D.; Woisel, P.; Detrembleur, C. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 2013, 38, 236–270.

[31]

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

[32]

Zhang, W.; Wang, R. X.; Sun, Z. M.; Zhu, X. W.; Zhao, Q.; Zhang, T. F.; Cholewinski, A.; Yang, F.; Zhao, B. X.; Pinnaratip, R. et al. Catechol-functionalized hydrogels: Biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 2020, 49, 433–464.

[33]

Borisov, V. B.; Siletsky, S. A.; Nastasi, M. R.; Forte, E. ROS defense systems and terminal oxidases in bacteria. Antioxidants 2021, 10, 839.

[34]

Makabenta, J. M. V.; Nabawy, A.; Li, C. H.; Schmidt-Malan, S.; Patel, R.; Rotello, V. M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23–36.

[35]

Xie, M. M.; Gao, M.; Yun, Y.; Malmsten, M.; Rotello, V. M.; Zboril, R.; Akhavan, O.; Kraskouski, A.; Amalraj, J.; Cai, X. M. et al. Antibacterial nanomaterials: Mechanisms, impacts on antimicrobial resistance and design principles. Angew. Chem., Int. Ed. 2023, 62, e202217345.

[36]

Zhang, J. K.; Su, P. D.; Chen, H. H.; Qiao, M.; Yang, B.; Zhao, X. Impact of reactive oxygen species on cell activity and structural integrity of Gram-positive and Gram-negative bacteria in electrochemical disinfection system. Chem. Eng. J. 2023, 451, 138879.

[37]

Wang, Y.; Zhao, W. B.; Li, F. K.; Chang, S. L.; Cao, Q.; Guo, R.; Song, S. Y.; Liu, K. K.; Shan, C. X. Engineering sizable and broad-spectrum antibacterial fabrics through hydrogen bonding interaction and electrostatic interaction. ACS Appl. Mater. Interfaces 2024, 16, 8321–8332.

[38]

Wang, Y.; Liu, K. K.; Zhao, W. B.; Sun, J. L.; Chen, X. X.; Zhang, L. L.; Cao, Q.; Zhou, R.; Dong, L.; Shan, C. X. Antibacterial fabrics based on synergy of piezoelectric effect and physical interaction. Nano Today 2023, 48, 101737.

[39]

Jiang, L. Y.; Zhang, S. F.; Liang, Y. C.; Zhou, Y. C.; Shao, H. C.; Wang, H. Y.; Liu, K. K.; Shan, C. X. Advancing programmable information encryption circuits through colorful phosphorescent carbon nanodots with versatile lifetimes. Adv. Opt. Mater. 2024, 12, 2401494.

[40]

Zhao, W. B.; Du, M. R.; Liu, K. K.; Zhou, R.; Ma, R. N.; Jiao, Z.; Zhao, Q.; Shan, C. X. Hydrophilic ZnO nanoparticles@calcium alginate composite for water purification. ACS Appl. Mater. Interfaces 2020, 12, 13305–13315.

[41]

Zhou, R.; Sui, L. Z.; Liu, X. B.; Liu, K. K.; Guo, D. Y.; Zhao, W. B.; Song, S. Y.; Lv, C. F.; Chen, S.; Jiang, T. C. et al. Multiphoton excited singlet/triplet mixed self-trapped exciton emission. Nat. Commun. 2023, 14, 1310.

[42]

Zhu, Y. W.; Sun, Y. J.; Wang, J. L.; Yu, B. R. Antimicrobial and antifouling surfaces through polydopamine bio-inspired coating. Rare Met. 2022, 41, 499–518.

[43]

Zheng, N.; Huang, Y. D.; Sun, W. F.; Du, X. S.; Liu, H. Y.; Moody, S.; Gao, J. F.; Mai, Y. W. In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates. Carbon 2016, 110, 69–78.

[44]

Li, M.; Zhang, S. B.; Li, L. W.; Han, J. Y.; Zhu, X. L.; Ge, Q. F.; Wang, H. Construction of highly active and selective polydopamine Modified hollow ZnO/Co3O4 p-n heterojunction catalyst for photocatalytic CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 11465–11476.

[45]

Liang, Y. C.; Shao, H. C.; Liu, K. K.; Cao, Q.; Deng, Y.; Hu, Y. W.; Yang, K.; Jiang, L. Y.; Shan, C. X.; Kuang, L. M. et al. Visualizing motion trail via phosphorescence carbon nanodots-based delay display array. ACS Appl. Mater. Interfaces 2024, 16, 26643–26652.

[46]

Jiang, L. Y.; Zhou, Y. C.; Zhang, S. F.; Shao, H. C.; Liang, Y. C. Time division colorful multiplexing based on carbon nanodots with modifiable colors and lifetimes. Nano Lett. 2024, 24, 8418–8426.

[47]

Cao, Q.; Liu, K. K.; Liang, Y. C.; Song, S. Y.; Deng, Y.; Mao, X.; Wang, Y.; Zhao, W. B.; Lou, Q.; Shan, C. X. Brighten triplet excitons of carbon nanodots for multicolor phosphorescence films. Nano Lett. 2022, 22, 4097–4105.

[48]

Li, K.; Skolrood, L. N.; Aytug, T.; Tekinalp, H.; Ozcan, S. Strong and tough cellulose nanofibrils composite films: Mechanism of synergetic effect of hydrogen bonds and ionic interactions. ACS Sustain. Chem. Eng. 2019, 7, 14341–14346.

[49]

Fu, J. W.; Chen, Z. H.; Wang, M. H.; Liu, S. J.; Zhang, J. H.; Zhang, J. N.; Han, R. P.; Xu, Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53–61.

[50]

Li, J.; Tan, L.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Chu, P. K.; Wu, S. L. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano 2017, 11, 11250–11263.

[51]

Liu, M.; Peng, Y.; Nie, Y. B.; Liu, P.; Hu, S.; Ding, J. S.; Zhou, W. H. Co-delivery of doxorubicin and DNAzyme using ZnO@polydopamine core–shell nanocomposites for chemo/gene/photothermal therapy. Acta Biomater. 2020, 110, 242–253.

[52]

Ye, Q.; Zhou, F.; Liu, W. M. Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40, 4244–4258.

[53]

Zhao, W. B.; Liu, K. K.; Wang, Y.; Li, F. K.; Guo, R.; Song, S. Y.; Shan, C. X. Antibacterial carbon dots: Mechanisms, design, and applications. Adv. Healthcare Mater. 2023, 12, 2300324.

[54]

Zhou, R.; Cui, D. J.; Zhao, Q.; Liu, K. K.; Zhao, W. B.; Liu, Q.; Ma, R. N.; Jiao, Z.; Dong, L.; Shan, C. X. Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chem. 2022, 388, 132994.

[55]

Liang, Y. C.; Shao, H. C.; Liu, K. K.; Cao, Q.; Jiang, L. Y.; Shan, C. X.; Kuang, L. M.; Jing, H. Thermally enhanced phosphorescent carbon nanodots for monitoring cold-chain logistics. Small 2024, 20, 2312218.

[56]

Liang, Y. C.; Cao, Q.; Deng, Y.; Wang, Y.; Liu, K. K.; Shan, C. X. Triggering triplet excitons of carbon nanodots through nanospace domain confinement for multicolor phosphorescence in aqueous solution. Nano Res. 2024, 17, 6534–6543.

[57]

Qin, J. X.; Yang, X. G.; Shen, C. L.; Chang, Y.; Deng, Y.; Zhang, Z. F.; Liu, H.; Lv, C. F.; Li, Y. Z.; Zhang, C. et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy 2022, 101, 107549.

[58]

Chen, Y. X.; Xu, X. M.; Wang, Z. W.; Hua, G. Y.; Zhang, Y. H.; Liu, F. Q. Dehydration-modulated pomelo peel cellulose nanofiber interlayer customized polyamide membrane with highly uniform pores for efficient nanofiltration. Chem. Eng. J. 2024, 496, 154128.

[59]

Guillen-Burrieza, E.; Servi, A.; Lalia, B. S.; Arafat, H. A. Membrane structure and surface morphology impact on the wetting of MD membranes. J. Membr. Sci. 2015, 483, 94–103.

Nano Research
Article number: 94907205
Cite this article:
Wang Y, Zhao W-B, Li F-K, et al. Mussel-bionic fiber@ZnO composite membrane for self-cleaning antibacterial mask. Nano Research, 2025, 18(3): 94907205. https://doi.org/10.26599/NR.2025.94907205
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return