PDF (16.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Water enhances photocatalytic activity for toluene selective oxidation in acetic acid solution

Sheng Tian1Jinxin Li1Binghao Wang1Xiong Wang1Xingsheng Hu1Huijuan Wang1Lang Chen1 ()Shuang-Feng Yin1,2()
Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
Show Author Information

Graphical Abstract

View original image Download original image
In acetic acid solvent, the introduction of an appropriate amount of water established an acidic environment to facilitate the formation of highly reactive hydroxyl radicals (·OH) through the O2 → ·O2 → H2O2 → ·OH process. ·OH and photogenerated holes collaborate to activate C(sp3)–H bonds, thereby facilitating the conversion of toluene into benzaldehyde.

Abstract

Photocatalytic oxidation of hydrocarbons to value-added oxygen-containing compounds is a green and sustainable method. However, the efficient activation of C(sp3)–H bonds under mild conditions remains a significant challenge. In this study, we prepared BiOBr/Bi2MoO6 Z-scheme heterostructure for photocatalytic selective oxidation of toluene to benzaldehyde utilizing acetic acid as solvent. A small amount of water as an additive established an acidic environment to facilitate the formation of highly reactive hydroxyl radicals (·OH) through the O2 →·O2 → H2O2 →·OH process. The ·OH together with photogenerated holes acted as reactive species dissociate C(sp3)–H bonds, which is regarded as the rate-determining step for this reaction, boosting photocatalytic activity. Compared to the reaction system without water, the conversion of toluene increased from 23.6% to 39.0%, reaching a toluene conversion rate of 6110 μmol·g–1·h–1. Additionally, there is a slight improvement in the selectivity of benzaldehyde.

Electronic Supplementary Material

Download File(s)
7206_ESM.pdf (2.6 MB)

References

[1]

Labinger, J. A.; Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 2002, 417, 507–514.

[2]

Kesavan, L.; Tiruvalam, R.; Ab Rahim, M. H.; Bin Saiman, M. I.; Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D. W. et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195–199.

[3]

Rogge, T.; Kaplaneris, N.; Chatani, N.; Kim, J.; Chang, S.; Punji, B.; Schafer, L. L.; Musaev, D. G.; Wencel-Delord, J.; Roberts, C. A. et al. C–H activation. Nat. Rev. Methods Primers 2021, 1, 43.

[4]

Yang, Y. L.; Chen, Z. Y.; Huang, H. L.; Liu, Y. X.; Zou, J. H.; Shen, S. Q.; Yan, J. W.; Zhang, J. S.; Zhuang, Z. Y.; Luo, Z. Z. et al. Synergistic surface activation during photocatalysis on perovskite derivative sites in heterojunction. Appl. Catal. B: Environ. 2023, 323, 122146.

[5]

Zhou, B.; Fan, K. Z.; Chong, Y. A.; Xu, S.; Wei, J. W.; Wei, J. K.; Sergeev, A. A.; Wong, K. S.; Li, T.; Chen, G. X. et al. Modulating adsorption-redox sites and charge separation of Cs3Bi2Br9– x @AgBr core–shell heterostructure for selective toluene photooxidation. ACS Energy Lett. 2024, 9, 1743–1752.

[6]

Xiong, L. Q.; Tang, J. W. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy Mater. 2021, 11, 2003216.

[7]

Xu, X.; Wang, J.; Chen, T.; Yang, N.; Wang, S. Y.; Ding, X.; Chen, H. Deep insight into ROS mediated direct and hydroxylated dichlorination process for efficient photocatalytic sodium pentachlorophenate mineralization. Appl. Catal. B: Environ. 2021, 296, 120352.

[8]

Bai, Z. J.; Tan, X. P.; Chen, L.; Hu, B.; Tan, Y. X.; Mao, Y.; Shen, S.; Guo, J. K.; Au, C. T.; Liang, Z. W. et al. Efficient photocatalytic toluene selective oxidation over Cs3Bi1.8Sb0.2Br9 nanosheets: Enhanced charge carriers generation and C–H bond dissociation. Chem. Eng. Sci. 2022, 247, 116983.

[9]

Tan, Y. X.; Chai, Z. M.; Wang, B. H.; Tian, S.; Deng, X. X.; Bai, Z. J.; Chen, L.; Shen, S.; Guo, J. K.; Cai, M. Q. et al. Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: Synergetic effect of compact heterojunction and S-vacancy. ACS Catal. 2021, 11, 2492–2503.

[10]

Li, Z. Z.; Meng, X. C. New insight into reactive oxidation species (ROS) for bismuth-based photocatalysis in phenol removal. J. Hazard. Mater. 2020, 399, 122939.

[11]

Ma, H. Y.; Zhao, L. X.; Guo, L. H.; Zhang, H.; Chen, F. J.; Yu, W. C. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV. J. Hazard. Mater. 2019, 369, 719–726.

[12]

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

[13]

Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C–H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110–19117.

[14]

Cao, X.; Huang, A. J.; Liang, C.; Chen, H. C.; Han, T.; Lin, R.; Peng, Q.; Zhuang, Z. W.; Shen, R. A.; Chen, H. M. et al. Engineering lattice disorder on a photocatalyst: Photochromic BiOBr nanosheets enhance activation of aromatic C–H Bonds via water oxidation. J. Am. Chem. Soc. 2022, 144, 3386–3397.

[15]

Wang, C. Y.; Zhang, X.; Zhang, Y. J.; Chen, J. J.; Huang, G. X.; Jiang, J.; Wang, W. K.; Yu, H. Q. Direct generation of hydroxyl radicals over bismuth oxybromide nanobelts with tuned band structure for photocatalytic pollutant degradation under visible light irradiation. Appl. Catal. B: Environ. 2018, 237, 464–472.

[16]

Wang, Y. X.; Li, X.; Liu, S. N.; Liu, Y.; Kong, T.; Zhang, H. Y.; Duan, X. G.; Chen, C. M.; Wang, S. B. Roles of catalyst structure and gas surface reaction in the generation of hydroxyl radicals for photocatalytic oxidation. ACS Catal. 2022, 12, 2770–2780.

[17]

Devi, M.; Chakraborty, D.; Barbhuiya, M. H.; Das, B.; Nath, S.; Dhar, S. S. Phase engineering in graphitic carbon nitride with imidazolium sulfonic acid chloride ionic liquid functionalization for photocatalytic side-chain oxidation of toluene. Appl. Catal. A: Gen. 2022, 633, 118515.

[18]

Lu, B.; Cai, N.; Sun, J.; Wang, X.; Li, X.; Zhao, J. X.; Cai, Q. H. Solvent-free oxidation of toluene in an ionic liquid with H2O2 as oxidant. Chem. Eng. J. 2013, 225, 266–270.

[19]

Zhang, Q. H.; An, B.; Lei, Y.; Gao, Z. X.; Zhang, H. N.; Xue, S.; Jin, X.; Xu, W. G.; Wu, Z. H.; Wu, M. B. et al. Cl2· mediates direct and selective conversion of inert C(sp3)–H bonds into aldehydes/ketones. Angew. Chem., Int. Ed. 2023, 62, e202304699.

[20]

Chen, X.; Sheng, X.; Zhou, H.; Liu, Z. P.; Xu, M. M.; Feng, X. J. Hydrophobicity promoted efficient hydroxyl radical generation in visible-light-driven photocatalytic oxidation. Small 2024, 20, e2310128.

[21]

Kondo, Y.; Honda, K.; Kuwahara, Y.; Mori, K.; Kobayashi, H.; Yamashita, H. Boosting photocatalytic hydrogen peroxide production from oxygen and water using a hafnium-based metal-organic framework with missing-linker defects and nickel single atoms. ACS Catal. 2022, 12, 14825–14835.

[22]

Xia, H.; Liu, Z. L.; Xu, Y. Y.; Zuo, J. L.; Qin, Z. Z. Highly efficient V–Mo–Fe–O catalysts for selective oxidation of toluene to benzaldehyde. Catal. Commun. 2016, 86, 72–76.

[23]

Wu, X. L.; Tan, H. L.; Zhang, C. H.; Teng, Z. Y.; Liu, Z. L.; Hau Ng, Y.; Zhang, Q. T.; Su, C. L. Recent advances in two-dimensional ultrathin Bi-based photocatalysts. Prog. Mater. Sci. 2023, 133, 101047.

[24]

Ma, H.; He, Y.; Chen, P.; Wang, H.; Sun, Y. J.; Li, J. Y.; Dong, F.; Xie, G. X.; Sheng, J. P. Ultrathin two-dimensional Bi-based photocatalysts: Synthetic strategies, surface defects, and reaction mechanisms. Chem. Eng. J. 2021, 417, 129305.

[25]

Sun, Y.; Ahmadi, Y.; Kim, K. H.; Lee, J. The use of bismuth-based photocatalysts for the production of ammonia through photocatalytic nitrogen fixation. Renew. Sustain. Energy Rev. 2022, 170, 112967.

[26]

Yu, H. B.; Jiang, L. B.; Wang, H.; Huang, B. B.; Yuan, X. Z.; Huang, J. H.; Zhang, J.; Zeng, G. M. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: A critical review. Small 2019, 15, 1901008.

[27]

Zhao, Q. Y.; Hou, X. L.; Liu, X. L.; Chong, M. B.; Cheng, D. G.; Chen, F. Q.; Zhan, X. L. Facet-dependent oxygen mobility and reaction pathways for oxidative dehydrogenation of 1-butene over Bi2MoO6. ACS Catal. 2024, 14, 3543–3555.

[28]

Chen, H. J.; Xu, R. H.; Chen, D.; Lu, T. L.; Li, H. J.; Wang, M. Subsurface Mo vacancy in bismuth molybdate promotes photocatalytic oxidation of lactate to pyruvate. ACS Catal. 2024, 14, 1977–1986.

[29]

Ding, F.; Chen, P.; Liu, F.; Chen, L.; Guo, J. K.; Shen, S.; Zhang, Q.; Meng, L. H.; Au, C. T.; Yin, S. F. Bi2MoO6/g-C3N4 of 0D/2D heterostructure as efficient photocatalyst for selective oxidation of aromatic alkanes. Appl. Surf. Sci. 2019, 490, 102–108.

[30]

Cai, K.; Lv, S. Y.; Song, L. N.; Chen, L.; He, J.; Chen, P.; Au, C. T.; Yin, S. F. Facile preparation of ultrathin Bi2MoO6 nanosheets for photocatalytic oxidation of toluene to benzaldehyde under visible light irradiation. J. Solid State Chem. 2019, 269, 145–150.

[31]

Zhang, K. F.; Chen, H. X.; Liu, Y. X.; Deng, J. G.; Jing, L.; Rastegarpanah, A.; Pei, W. B.; Han, Z.; Dai, H. X. Two-dimensional Bi2W x Mo1- x O6 solid solution nanosheets for enhanced photocatalytic toluene oxidation to benzaldehyde. Appl. Catal. B: Environ. 2022, 315, 121545.

[32]

Hao, Y. C.; Dong, X. L.; Wang, X. Y.; Zhai, S. R.; Ma, H. C.; Zhang, X. F. Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi2MoO6 frameworks: Efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation. J. Mater. Chem. A. 2016, 4, 8298–8307.

[33]

Chen, C.; Qiu, G. H.; Wang, T.; Zheng, Z. Q.; Huang, M. T.; Li, B. X. Modulating oxygen vacancies on bismuth-molybdate hierarchical hollow microspheres for photocatalytic selective alcohol oxidation with hydrogen peroxide production. J. Colloid Interface Sci. 2021, 592, 1–12.

[34]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[35]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[36]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[37]

Ma, T. X.; Yang, C. M.; Guo, L.; Soomro, R. A.; Wang, D. J.; Xu, B.; Fu, F. Refining electronic properties of Bi2MoO6 by In-doping for boosting overall nitrogen fixation via relay catalysis. Appl. Catal. B: Environ. 2023, 330, 122643.

[38]

Liu, Z.; Tian, J.; Yu, C. L.; Fan, Q. Z.; Liu, X. Q. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation. Chin. J. Catal. 2022, 43, 472–484.

[39]

Jing, K. Q.; Xiong, J. H.; Qin, N.; Song, Y. J.; Li, L. Y.; Yu, Y.; Liang, S. J.; Wu, L. Development and photocatalytic mechanism of monolayer Bi2MoO6 nanosheets for the selective oxidation of benzylic alcohols. Chem. Commun. 2017, 53, 8604–8607.

[40]

Zheng, Y.; Zhou, T. F.; Zhao, X. D.; Pang, W. K.; Gao, H.; Li, S. A.; Zhou, Z.; Liu, H. K.; Guo, Z. P. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 2017, 29, 1700396.

[41]

Feng, R. Z.; Guo, M. N.; Yang, Z. Q.; Qiu, J. Q.; Wang, Z. Q.; Zhao, Y. L. 0D/2D Bi2MoO6 quantum dots/rGO heterojunction boosting full solar spectrum-driven photothermal catalytic CO2 reduction to solar fuels. Carbon 2024, 224, 119079.

[42]

Tian, S.; Ding, Y. F.; Cai, M. Q.; Chen, L.; Au, C. T.; Yin, S. F. Enhanced photocatalytic activity of the direct Z-scheme black phosphorus/BiOX (X = Cl, Br, I) heterostructures. Phys. Chem. Chem. Phys. 2021, 23, 17894–17903.

[43]

Zhang, J. R.; Deng, X. Z.; Gao, B.; Chen, L.; Au, C. T.; Li, K. L.; Yin, S. F.; Cai, M. Q. Theoretical study on the intrinsic properties of In2Se3/MoS2 as a photocatalyst driven by near-infrared, visible and ultraviolet light. Catal. Sci. Technol. 2019, 9, 4659–4667.

[44]

Yang, X. M.; Wang, X. N.; Liang, C. H.; Su, W. G.; Wang, C.; Feng, Z. C.; Li, C.; Qiu, J. S. Aerobic oxidation of alcohols over Au/TiO2: An insight on the promotion effect of water on the catalytic activity of Au/TiO2. Catal. Commun. 2008, 9, 2278–2281.

[45]

Wei, Q. B.; Yu, C.; Song, X. D.; Zhong, Y. P.; Ni, L.; Ren, Y. W.; Guo, W.; Yu, J. H.; Qiu, J. S. Recognition of water-induced effects toward enhanced interaction between catalyst and reactant in alcohol oxidation. J. Am. Chem. Soc. 2021, 143, 6071–6078.

[46]

Bai, Z. J.; Mao, Y.; Wang, B. H.; Chen, L.; Tian, S.; Hu, B.; Li, Y. J.; Au, C. T.; Yin, S. F. Tuning photocatalytic performance of Cs3Bi2Br9 perovskite by g-C3N4 for C(sp3)–H bond activation. Nano Res. 2023, 16, 6104–6112.

[47]

Chai, Z. M.; Wang, B. H.; Tan, Y. X.; Bai, Z. J.; Pan, J. B.; Chen, L.; Shen, S.; Guo, J. K.; Xie, T. L.; Au, C. T. et al. Enhanced photocatalytic activity for selective oxidation of toluene over cubic-hexagonal CdS phase junctions. Ind. Eng. Chem. Res. 2021, 60, 11106–11116.

[48]

Deng, X. X.; Tian, S.; Chai, Z. M.; Bai, Z. J.; Tan, Y. X.; Chen, L.; Guo, J. K.; Shen, S.; Cai, M. Q.; Au, C. T. et al. Boosted activity for toluene selective photooxidation over Fe-doped Bi2WO6. Ind. Eng. Chem. Res. 2020, 59, 13528–13538.

[49]

Jiang, Y.; Jiang, Y. S.; Cheng, S. Y.; Xi, Y. Y.; Sun, X.; Xu, Y. C.; Yang, Z. D. Modulate synthesis of CeMn solid solution using various alcohols for toluene catalytic oxidation: Synergistic effect of Ce–Mn and reaction mechanism. J. Hazard. Mater. 2024, 476, 135051.

[50]

Mi, R. L.; Li, D.; Hu, Z.; Yang, R. T. Morphology effects of CeO2 nanomaterials on the catalytic combustion of toluene: A combined kinetics and diffuse reflectance infrared fourier transform spectroscopy study. ACS Catal. 2021, 11, 7876–7889.

[51]

Xue, Z.; Yang, J. R.; Ma, L. N.; Li, H. C.; Luo, L.; Ji, K. Y.; Li, Z. H.; Kong, X. G.; Shao, M. F.; Zheng, L. R. et al. Efficient benzylic C–H bond activation over single-atom yttrium supported on TiO2 via facilitated molecular oxygen and surface lattice oxygen activation. ACS Catal. 2024, 14, 249–261.

[52]

Shi, Y. Z.; Li, P.; Chen, H. L.; Wang, Z. W.; Song, Y. J.; Tang, Y.; Lin, S.; Yu, Z. Y.; Wu, L.; Yu, J. C. et al. Photocatalytic toluene oxidation with nickel-mediated cascaded active units over Ni/Bi2WO6 monolayers. Nat. Commun. 2024, 15, 4641.

[53]

Li, S. Z.; Huber, N.; Huang, W.; Wei, W. X.; Landfester, K.; Ferguson, C. T. J.; Zhao, Y.; Zhang, K. A. I. Triazine frameworks for the photocatalytic selective oxidation of toluene. Angew. Chem., Int. Ed. 2024, 63, e202400101.

[54]

Zhang, Q. L.; Yang, S. Y.; Zhang, H. X.; He, T. Y.; Liu, W. M.; Sun, X. M.; Li, G. B.; Yu, Y. B.; Peng, H. G. Unveiling the confinement and interface effect on low temperature degradation of toluene over mesoporous zeolite encapsulated Pt-CeO2 catalyst. Chem. Eng. J. 2024, 485, 150004.

[55]

Li, Y. F.; Chen, T. Y.; Zhao, S. Q.; Wu, P.; Chong, Y. N.; Li, A. Q.; Zhao, Y.; Chen, G. X.; Jin, X. J.; Qiu, Y. C. et al. Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene. ACS Catal. 2022, 12, 4906–4917.

[56]

Zhao, J. G.; Wang, P. F.; Wang, J.; Liu, C. L.; Wang, J. L.; Shi, L.; Xu, G. W.; Abudula, A.; Guan, G. Q. Biostarch-assisted synthesis of microscopic heterogeneous manganese-cobalt oxides for efficient catalytic combustion of toluene. Chem. Eng. J. 2023, 464, 142739.

[57]

Li, B.; Xiong, H.; Dai, W. L.; Huang, Z. L.; Zhong, X. L.; Zhang, J.; Zhou, L.; Wu, K. S.; Zou, J. P.; Luo, X. B. Enabling the activation of lattice oxygen and high distribution of Co3+ on LaCoO3 surface through fluorine incorporation to promote toluene combustion. Appl. Catal. B: Environ. Energy. 2024, 347, 123828.

[58]

Chong, Y. N.; Chen, T. Y.; Li, Y. F.; Lin, J. J.; Huang, W. H.; Chen, C. L.; Jin, X. J.; Fu, M. L.; Zhao, Y.; Chen, G. X. et al. Quenching-induced defect-rich platinum/metal oxide catalysts promote catalytic oxidation. Environ. Sci. Technol. 2023, 57, 5831–5840.

Nano Research
Article number: 94907206
Cite this article:
Tian S, Li J, Wang B, et al. Water enhances photocatalytic activity for toluene selective oxidation in acetic acid solution. Nano Research, 2025, 18(3): 94907206. https://doi.org/10.26599/NR.2025.94907206
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return