PDF (29.6 MB)
Collect
Submit Manuscript
Show Outline
Figures (9)

Tables (2)
Table 1
Table 2
Research Article | Open Access | Online First

Construction of a magnetic driven-quantum dots ratiometric fluorescence-immunosensor for rapid and accurate detection of C-reactive protein

Shenping Yu1,§Yangchao Shi1,§Yanbing Lv1 ()Li Wang2Yuke Ma2Ning Li1Xiuyuan Zuo3Yifan Li4 ()Jinjin Fan1Zifeng Zhang1 ()Ruili Wu1Huaibin Shen1Lin Song Li1 ()
Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng 475004, China
Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, Yingkou 115014, China
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, USA

§ Shenping Yu and Yangchao Shi contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A novel immunosensor based on quantum dots (QDs) ratiometric fluorescence (QRF) and magnetic driven technology was developed for sensitive, rapid, accurate, and high-throughput detection of biomarkers. As a proof of concept, it has excellent performance in the detection of the inflammatory factor C-reactive protein (CRP) antigen.

Abstract

Efficient, sensitive, and convenient quantum dots (QDs) fluorescent immunosensors have a wide range of applications in the field of in vitro diagnostics (IVD). However, traditional single-signal readout methods are susceptible to interference, have limited sensitivity, and involve time-consuming detection processes. These have become key bottlenecks restricting their use in point-of-care (POC) detection. Herein, we developed a novel immunosensor based on QDs ratiometric fluorescence (QRF) and magnetic driven technology for sensitive, rapid, accurate detection of C-reactive protein (CRP). High-quality magnetic-fluorescent QDs nanobeads (QBs) were prepared by efficiently and orderly layered loading of magnetic nanoparticles (MNP) and red QDs using mesoporous silica nanoparticles (MSN) as a template. The magnetic driven-QRF-immunosensor was constructed based on green QDs probes-functionalized microplate. The results showed that the linear range of magnetic-fluorescence probes for the detection of CRP was 0.1–1000 ng/mL, with a sensitivity of up to 0.05 ng/mL. Compared to conventional QRF-immunosensor, the detection time was halved (within 30 min), and the sensitivity improved by approximately 5-fold. Recovery experiments and clinical sample analyses also demonstrated the good accuracy of this immunoassay. Therefore, the constructed novel magnetic driven-QRF-immunosensor shows great potential for clinical diagnosis and disease monitoring, and is expected to be applied in POC detection as a new generation of detection technology.

Electronic Supplementary Material

Download File(s)
7207_ESM.pdf (1.2 MB)

References

[1]

Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521.

[2]

Li, Z. Y.; Zhang, J. Q.; Huang, Y. X.; Zhai, J. X.; Liao, G. F.; Wang, Z. G.; Ning, C. Y. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord. Chem. Rev. 2022, 471, 214723.

[3]

Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.

[4]

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

[5]

Song, N.; Sun, S.; Chen, K.; Wang, Y.; Wang, H.; Meng, J.; Guo, M. L.; Zhang, X. D.; Zhang, R. P. Emerging nanotechnology for Alzheimer’s disease: From detection to treatment. J. Control. Release 2023, 360, 392–417.

[6]

Guo, L.; Shao, Y. N.; Duan, H.; Ma, W.; Leng, Y. K.; Huang, X. L.; Xiong, Y. H. Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce. Anal. Chem. 2019, 91, 4727–4734.

[7]

Gu, J. S.; Han, T.; Peng, X. D.; Kang, H.; Dong, L. J. Highly sensitive fluorescent probe and portable test strip based on polyacrylic acid functionalized quantum dots for rapid visual detection of malachite green. Talanta 2024, 268, 125359.

[8]

Hong, F.; Huang, C. X.; Wu, L.; Wang, M.; Chen, Y. P.; She, Y. X. Highly sensitive magnetic relaxation sensing method for aflatoxin B1 detection based on Au NP-assisted triple self-assembly cascade signal amplification. Biosens. Bioelectron. 2021, 192, 113489.

[9]

Dang, M.; Wu, L. J.; Jin, G. L.; Yang, C. X.; Isah, M. B.; Zhang, X. Y. Quantum dot-based immunoassays: Unraveling sensitivity discrepancies and charting future frontiers. Anal. Chem. 2024, 96, 980–984.

[10]

Goryacheva, O. A.; Novikova, A. S.; Drozd, D. D.; Pidenko, P. S.; Ponomaryeva, T. S.; Bakal, A. A.; Mishra, P. K.; Beloglazova, N. V.; Goryacheva, I. Y. Water-dispersed luminescent quantum dots for miRNA detection. Trends Analyt. Chem. 2019, 111, 197–205.

[11]

Lv, Y. B.; Li, N.; Wang, L.; Fan, J. J.; Xing, H. H.; Shi, Y. C.; Yu, S. P.; Wu, R. L.; Shen, H. B.; Li, L. S. Tailored three-color quantum dots nanobeads for multiplexed detection with tunable detection range and multilevel sensitivity of signal-amplified immunosensor. Talanta 2024, 269, 125416.

[12]

Lv, Y. B.; Fan, J. J.; Zhao, M.; Wu, R. L.; Li, L. S. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. Nanoscale 2023, 15, 5560–5578.

[13]

Wu, F.; Yuan, H.; Zhou, C. H.; Mao, M.; Liu, Q.; Shen, H. B.; Cen, Y.; Qin, Z. F.; Ma, L.; Li, L. S. Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay. Biosens. Bioelectron. 2016, 77, 464–470.

[14]

Shao, Y. N.; Duan, H.; Guo, L.; Leng, Y. K.; Lai, W. H.; Xiong, Y. H. Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone. Anal. Chim. Acta 2018, 1025, 163–171.

[15]

Shi, Y. C.; Fan, J. J.; Li, N.; Lv, Y. B.; Yu, S. P.; Zhang, Y. N.; Ye, Y. L.; Wu, R. L.; Shen, H. B.; Li, L. S. Tailored different sizes of quantum dot nanobeads for sensitive and quantitative detection based on the competition fluorescence-linked immunosorbent assay platform. Talanta 2024, 276, 126296.

[16]

Li, J. J.; Lv, Y. B.; Li, N.; Wu, R. L.; Xing, M.; Shen, H. B.; Li, L. S.; Chen, X. Robust synthesis of bright multiple quantum dot-embedded nanobeads and its application to quantitative immunoassay. Chem. Eng. J. 2019, 361, 499–507.

[17]

Dembele, F.; Tasso, M.; Trapiella-Alfonso, L.; Xu, X. Z.; Hanafi, M.; Lequeux, N.; Pons, T. Zwitterionic silane copolymer for ultra-stable and bright biomolecular probes based on fluorescent quantum dot nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 18161–18169.

[18]

Jin, Q. L.; Zhang, X. H.; Zhang, L. F.; Li, J. J.; Lv, Y. B.; Li, N.; Wang, L.; Wu, R. L.; Li, L. S. Fabrication of CuInZnS/ZnS quantum dot microbeads by a two-step approach of emulsification-solvent evaporation and surfactant substitution and its application for quantitative detection. Inorg. Chem. 2023, 62, 3474–3484.

[19]

Wu, W. J.; Liu, X. Y.; Shen, M. F.; Shen, L. S.; Ke, X.; Cui, D. X.; Li, W. W. Multicolor quantum dot nanobeads based fluorescence-linked immunosorbent assay for highly sensitive multiplexed detection. Sens. Actuators B: Chem. 2021, 338, 129827.

[20]

Lv, Y. B.; Wang, P. P.; Li, J. J.; Li, N.; Xu, D. D.; Wu, R. L.; Shen, H. B.; Li, L. S. Establishment of a Ca(II) ion-quantum dots fluorescence signal amplification sensor for high-sensitivity biomarker detection. Anal. Chim. Acta 2023, 1237, 340534.

[21]

Chen, F. F.; Zhang, R. X.; Que, D. M.; Xing, H. H.; Li, N.; Li, Y. H.; Lv, Y. B.; Wu, R. L.; Shen, H. B.; Xu, D. D. et al. Highly sensitive metal-enhanced fluorescence platform based on high-quality CdSe/ZnS quantum dots and gold nanodendrites. Chem. Eng. J. 2023, 477, 147240.

[22]

Fan, J. J.; Li, N.; Wang, F. F.; Lv, Y. B.; Jin, Q. L.; Zhao, M.; Shi, Y. C.; Wu, R. L.; Shen, H. B.; Li, L. S. Precisely designed growth of dual-color quantum dots bilayer nanobeads for ratiometric fluorescent immunoassay. Sens. Actuators B: Chem. 2023, 375, 132888.

[23]

Wang, C. W.; Xiao, R.; Wang, S.; Yang, X. S.; Bai, Z. K.; Li, X. Y.; Rong, Z.; Shen, B. F.; Wang, S. Q. Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens. Bioelectron. 2019, 146, 111754.

[24]

Huang, L.; Jin, J. N.; Ao, L. J.; Jiang, C. X.; Zhang, Y. X.; Wen, H. M.; Wang, J.; Wang, H. Y.; Hu, J. Hierarchical plasmonic-fluorescent labels for highly sensitive lateral flow immunoassay with flexible dual-modal switching. ACS Appl. Mater. Interfaces 2020, 12, 58149–58160.

[25]

Zheng, S.; Wu, T.; Li, J. X.; Jin, Q.; Xiao, R.; Wang, S. Q.; Wang, C. W. Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods. Sens. Actuators B: Chem. 2022, 359, 131528.

[26]

Wang, C. W.; Yang, X. S.; Zheng, S.; Cheng, X. D.; Xiao, R.; Li, Q. J.; Wang, W. Q.; Liu, X. X.; Wang, S. Q. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens. Actuators B: Chem. 2021, 345, 130372.

[27]

Sathe, T. R.; Agrawal, A.; Nie, S. M. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: Dual-function microcarriers for optical encoding and magnetic separation. Anal. Chem. 2006, 78, 5627–5632.

[28]

Zhang, B.; Tang, W. S.; Ding, S. N. Magnetic quantum dots barcodes using Fe3O4/TiO2 with weak spectral absorption in the visible region for high-sensitivity multiplex detection of tumor markers. Biosens. Bioelectron. 2023, 227, 115153.

[29]

Fan, J. J.; Shi, Y. C.; Lv, Y. B.; Li, N.; Wu, R. L.; Shen, H. B.; Li, L. S. Tailored controllable bifunctional fluorescent-magnetic nanobeads for new generation fast-response immunosensor with dual-signal amplification. Sens. Actuators B: Chem. 2025, 423, 136804.

[30]

Min, X. H.; Cao, B. M.; Huang, S.; Yuan, C.; Wang, S. H. Bioorthogonal chemistry-based high-efficient quantum dots binding boosts the detection sensitivity of plasmon-enhanced fluorescence platform for immunoassay. Sens. Actuators B: Chem. 2023, 382, 133516.

[31]

Yuan, J. R.; Wang, L.; Huang, L.; He, K. Y.; Wang, H. M.; Xu, X. H.; Su, B.; Wang, J. CRISPR-Cas12a-mediated hue-recognition lateral flow assay for point-of-need detection of Salmonella. Anal. Chem. 2024, 96, 220–228.

[32]

Li, T. T.; Wang, D.; Hu, J.; Fu, X.; Ji, Y. B.; Li, R. J. A promising tool for clinical diagnostics: Dual-emissive carbonized polymer dots based cross-linking enhanced emission for sensitive detection of alkaline phosphatase and butyrylcholinesterase. Biosens. Bioelectron. 2023, 238, 115576.

[33]

Han, E.; Fritzer-Szekeres, M.; Szekeres, T.; Anvari-Pirsch, A.; Gyoengyoesi, M.; Bergler-Klein, J. Agreement between high-sensitivity C-reactive protein and C-reactive protein assays. Eur. Heart. J. 2021, 42, ehab724.1084.

[34]

Sonawane, M. D.; Nimse, S. B. C-reactive protein: A major inflammatory biomarker. Anal. Methods 2017, 9, 3400–3413.

[35]

Luan, Y. Y.; Yao, Y. M. The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front. Immunol. 2018, 9, 1302.

[36]

Huang, L.; Zhang, Y. X.; Liao, T.; Xu, K.; Jiang, C. X.; Zhuo, D.; Wang, Y.; Wen, H. M.; Wang, J.; Ao, L. J. et al. Compact magneto-fluorescent colloids by hierarchical assembly of dual-components in radial channels for sensitive point-of-care immunoassay. Small 2021, 17, 2100862.

[37]

Si, H. L.; Zhou, C. H.; Wang, H. Z.; Lou, S. Y.; Li, S.; Du, Z. L.; Li, L. S. Controlled synthesis of different types iron oxides nanocrystals in paraffin oil. J. Colloid. Interface Sci. 2008, 327, 466–471.

[38]

Li, X. M.; Si, H. L.; Niu, J. Z.; Shen, H. B.; Zhou, C. H.; Yuan, H.; Wang, H. Z.; Ma, L.; Li, L. S. Size-controlled syntheses and hydrophilic surface modification of Fe3O4, Ag, and Fe3O4/Ag heterodimer nanocrystals. Dalton Trans. 2010, 39, 10984–10989.

[39]

Lv, Y. B.; Wang, F. F.; Li, N.; Wu, R. L.; Li, J. J.; Shen, H. B.; Li, L. S.; Guo, F. Development of dual quantum dots-based fluorescence-linked immunosorbent assay for simultaneous detection on inflammation biomarkers. Sens. Actuators B: Chem. 2019, 301, 127118.

[40]

Si, H. L.; Wang, H. Z.; Shen, H. B.; Zhou, C. H.; Li, S.; Lou, S. Y.; Xu, W. W.; Du, Z. L.; Li, L. S. Controlled synthesis of monodisperse manganese oxide nanocrystals. CrystEngComm 2009, 11, 1128–1132.

[41]

António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A. L. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 2020, 214, 120868.

[42]

Yang, H. J.; Kim, M. W.; Raju, C. V.; Cho, C. H.; Park, T. J.; Park, J. P. Highly sensitive and label-free electrochemical detection of C-reactive protein on a peptide receptor-gold nanoparticle-black phosphorous nanocomposite modified electrode. Biosens. Bioelectron. 2023, 234, 115382.

[43]

Ma, Y. C.; Yang, J.; Yang, T.; Deng, Y.; Gu, M. Q.; Wang, M.; Hu, R.; Yang, Y. H. Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv. 2020, 10, 9723–9729.

[44]

Wu, R. L.; Zhou, S.; Chen, T.; Li, J. J.; Shen, H. B.; Chai, Y. J.; Li, L. S. Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal. Chem. Acta 2018, 1008, 1–7.

[45]

Lv, Y. B.; Wu, R. L.; Feng, K. R.; Li, J. J.; Mao, Q.; Yuan, H.; Shen, H. B.; Chai, X. D.; Li, L. S. Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot-based fluorescence-linked immunosorbent assay. J. Nanobiotechnol. 2017, 15, 35.

[46]

Chen, X.; Liu, X. L.; Zhang, C. Y.; Meng, H.; Liu, B. W.; Wei, X. Y. A rapid fluorescent aptasensor for point-of-care detection of C-reactive protein. Talanta 2022, 249, 123661.

[47]

Dang, T.; Li, Z. Y.; Zhao, L. Y.; Zhang, W.; Huang, L. P.; Meng, F. L.; Liu, G. L.; Hu, W. J. Ultrasensitive detection of C-reactive protein by a novel nanoplasmonic immunoturbidimetry assay. Biosensors 2022, 12, 958.

[48]

Son, S. E.; Gupta, P. K.; Hur, W.; Lee, H. B.; Han, D. K.; Seong, G. H. Hollow ruthenium nanoparticles with enhanced catalytic activity for colorimetric detection of C-reactive protein. ACS Appl. Nano Mater. 2023, 6, 11435–11442.

[49]

Fan, L. Z.; Yan, W. N.; Chen, Q. L.; Tan, F.; Tang, Y. J.; Han, H. X.; Yu, R. J.; Xie, N.; Gao, S. H.; Chen, W. S. et al. One-component dual-readout aggregation-induced emission nanobeads for qualitative and quantitative detection of C-reactive protein at the point of care. Anal. Chem. 2024, 96, 401–408.

[50]

Xie, J.; Tang, M. Q.; Chen, J.; Zhu, Y. H.; Lei, C. B.; He, H. W.; Xu, X. H. A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme. Talanta 2020, 217, 121070.

[51]

Ali, G. K.; Omer, K. M. Ultrasensitive aptamer-functionalized Cu–MOF fluorescent nanozyme as an optical biosensor for detection of C-reactive protein. Anal. Biochem. 2022, 658, 114928.

Nano Research
Cite this article:
Yu S, Shi Y, Lv Y, et al. Construction of a magnetic driven-quantum dots ratiometric fluorescence-immunosensor for rapid and accurate detection of C-reactive protein. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907207
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return