Efficient, sensitive, and convenient quantum dots (QDs) fluorescent immunosensors have a wide range of applications in the field of in vitro diagnostics (IVD). However, traditional single-signal readout methods are susceptible to interference, have limited sensitivity, and involve time-consuming detection processes. These have become key bottlenecks restricting their use in point-of-care (POC) detection. Herein, we developed a novel immunosensor based on QDs ratiometric fluorescence (QRF) and magnetic driven technology for sensitive, rapid, accurate detection of C-reactive protein (CRP). High-quality magnetic-fluorescent QDs nanobeads (QBs) were prepared by efficiently and orderly layered loading of magnetic nanoparticles (MNP) and red QDs using mesoporous silica nanoparticles (MSN) as a template. The magnetic driven-QRF-immunosensor was constructed based on green QDs probes-functionalized microplate. The results showed that the linear range of magnetic-fluorescence probes for the detection of CRP was 0.1–1000 ng/mL, with a sensitivity of up to 0.05 ng/mL. Compared to conventional QRF-immunosensor, the detection time was halved (within 30 min), and the sensitivity improved by approximately 5-fold. Recovery experiments and clinical sample analyses also demonstrated the good accuracy of this immunoassay. Therefore, the constructed novel magnetic driven-QRF-immunosensor shows great potential for clinical diagnosis and disease monitoring, and is expected to be applied in POC detection as a new generation of detection technology.
Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521.
Li, Z. Y.; Zhang, J. Q.; Huang, Y. X.; Zhai, J. X.; Liao, G. F.; Wang, Z. G.; Ning, C. Y. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord. Chem. Rev. 2022, 471, 214723.
Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.
Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.
Song, N.; Sun, S.; Chen, K.; Wang, Y.; Wang, H.; Meng, J.; Guo, M. L.; Zhang, X. D.; Zhang, R. P. Emerging nanotechnology for Alzheimer’s disease: From detection to treatment. J. Control. Release 2023, 360, 392–417.
Guo, L.; Shao, Y. N.; Duan, H.; Ma, W.; Leng, Y. K.; Huang, X. L.; Xiong, Y. H. Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce. Anal. Chem. 2019, 91, 4727–4734.
Gu, J. S.; Han, T.; Peng, X. D.; Kang, H.; Dong, L. J. Highly sensitive fluorescent probe and portable test strip based on polyacrylic acid functionalized quantum dots for rapid visual detection of malachite green. Talanta 2024, 268, 125359.
Hong, F.; Huang, C. X.; Wu, L.; Wang, M.; Chen, Y. P.; She, Y. X. Highly sensitive magnetic relaxation sensing method for aflatoxin B1 detection based on Au NP-assisted triple self-assembly cascade signal amplification. Biosens. Bioelectron. 2021, 192, 113489.
Dang, M.; Wu, L. J.; Jin, G. L.; Yang, C. X.; Isah, M. B.; Zhang, X. Y. Quantum dot-based immunoassays: Unraveling sensitivity discrepancies and charting future frontiers. Anal. Chem. 2024, 96, 980–984.
Goryacheva, O. A.; Novikova, A. S.; Drozd, D. D.; Pidenko, P. S.; Ponomaryeva, T. S.; Bakal, A. A.; Mishra, P. K.; Beloglazova, N. V.; Goryacheva, I. Y. Water-dispersed luminescent quantum dots for miRNA detection. Trends Analyt. Chem. 2019, 111, 197–205.
Lv, Y. B.; Li, N.; Wang, L.; Fan, J. J.; Xing, H. H.; Shi, Y. C.; Yu, S. P.; Wu, R. L.; Shen, H. B.; Li, L. S. Tailored three-color quantum dots nanobeads for multiplexed detection with tunable detection range and multilevel sensitivity of signal-amplified immunosensor. Talanta 2024, 269, 125416.
Lv, Y. B.; Fan, J. J.; Zhao, M.; Wu, R. L.; Li, L. S. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. Nanoscale 2023, 15, 5560–5578.
Wu, F.; Yuan, H.; Zhou, C. H.; Mao, M.; Liu, Q.; Shen, H. B.; Cen, Y.; Qin, Z. F.; Ma, L.; Li, L. S. Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay. Biosens. Bioelectron. 2016, 77, 464–470.
Shao, Y. N.; Duan, H.; Guo, L.; Leng, Y. K.; Lai, W. H.; Xiong, Y. H. Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone. Anal. Chim. Acta 2018, 1025, 163–171.
Shi, Y. C.; Fan, J. J.; Li, N.; Lv, Y. B.; Yu, S. P.; Zhang, Y. N.; Ye, Y. L.; Wu, R. L.; Shen, H. B.; Li, L. S. Tailored different sizes of quantum dot nanobeads for sensitive and quantitative detection based on the competition fluorescence-linked immunosorbent assay platform. Talanta 2024, 276, 126296.
Li, J. J.; Lv, Y. B.; Li, N.; Wu, R. L.; Xing, M.; Shen, H. B.; Li, L. S.; Chen, X. Robust synthesis of bright multiple quantum dot-embedded nanobeads and its application to quantitative immunoassay. Chem. Eng. J. 2019, 361, 499–507.
Dembele, F.; Tasso, M.; Trapiella-Alfonso, L.; Xu, X. Z.; Hanafi, M.; Lequeux, N.; Pons, T. Zwitterionic silane copolymer for ultra-stable and bright biomolecular probes based on fluorescent quantum dot nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 18161–18169.
Jin, Q. L.; Zhang, X. H.; Zhang, L. F.; Li, J. J.; Lv, Y. B.; Li, N.; Wang, L.; Wu, R. L.; Li, L. S. Fabrication of CuInZnS/ZnS quantum dot microbeads by a two-step approach of emulsification-solvent evaporation and surfactant substitution and its application for quantitative detection. Inorg. Chem. 2023, 62, 3474–3484.
Wu, W. J.; Liu, X. Y.; Shen, M. F.; Shen, L. S.; Ke, X.; Cui, D. X.; Li, W. W. Multicolor quantum dot nanobeads based fluorescence-linked immunosorbent assay for highly sensitive multiplexed detection. Sens. Actuators B: Chem. 2021, 338, 129827.
Lv, Y. B.; Wang, P. P.; Li, J. J.; Li, N.; Xu, D. D.; Wu, R. L.; Shen, H. B.; Li, L. S. Establishment of a Ca(II) ion-quantum dots fluorescence signal amplification sensor for high-sensitivity biomarker detection. Anal. Chim. Acta 2023, 1237, 340534.
Chen, F. F.; Zhang, R. X.; Que, D. M.; Xing, H. H.; Li, N.; Li, Y. H.; Lv, Y. B.; Wu, R. L.; Shen, H. B.; Xu, D. D. et al. Highly sensitive metal-enhanced fluorescence platform based on high-quality CdSe/ZnS quantum dots and gold nanodendrites. Chem. Eng. J. 2023, 477, 147240.
Fan, J. J.; Li, N.; Wang, F. F.; Lv, Y. B.; Jin, Q. L.; Zhao, M.; Shi, Y. C.; Wu, R. L.; Shen, H. B.; Li, L. S. Precisely designed growth of dual-color quantum dots bilayer nanobeads for ratiometric fluorescent immunoassay. Sens. Actuators B: Chem. 2023, 375, 132888.
Wang, C. W.; Xiao, R.; Wang, S.; Yang, X. S.; Bai, Z. K.; Li, X. Y.; Rong, Z.; Shen, B. F.; Wang, S. Q. Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens. Bioelectron. 2019, 146, 111754.
Huang, L.; Jin, J. N.; Ao, L. J.; Jiang, C. X.; Zhang, Y. X.; Wen, H. M.; Wang, J.; Wang, H. Y.; Hu, J. Hierarchical plasmonic-fluorescent labels for highly sensitive lateral flow immunoassay with flexible dual-modal switching. ACS Appl. Mater. Interfaces 2020, 12, 58149–58160.
Zheng, S.; Wu, T.; Li, J. X.; Jin, Q.; Xiao, R.; Wang, S. Q.; Wang, C. W. Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods. Sens. Actuators B: Chem. 2022, 359, 131528.
Wang, C. W.; Yang, X. S.; Zheng, S.; Cheng, X. D.; Xiao, R.; Li, Q. J.; Wang, W. Q.; Liu, X. X.; Wang, S. Q. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens. Actuators B: Chem. 2021, 345, 130372.
Sathe, T. R.; Agrawal, A.; Nie, S. M. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: Dual-function microcarriers for optical encoding and magnetic separation. Anal. Chem. 2006, 78, 5627–5632.
Zhang, B.; Tang, W. S.; Ding, S. N. Magnetic quantum dots barcodes using Fe3O4/TiO2 with weak spectral absorption in the visible region for high-sensitivity multiplex detection of tumor markers. Biosens. Bioelectron. 2023, 227, 115153.
Fan, J. J.; Shi, Y. C.; Lv, Y. B.; Li, N.; Wu, R. L.; Shen, H. B.; Li, L. S. Tailored controllable bifunctional fluorescent-magnetic nanobeads for new generation fast-response immunosensor with dual-signal amplification. Sens. Actuators B: Chem. 2025, 423, 136804.
Min, X. H.; Cao, B. M.; Huang, S.; Yuan, C.; Wang, S. H. Bioorthogonal chemistry-based high-efficient quantum dots binding boosts the detection sensitivity of plasmon-enhanced fluorescence platform for immunoassay. Sens. Actuators B: Chem. 2023, 382, 133516.
Yuan, J. R.; Wang, L.; Huang, L.; He, K. Y.; Wang, H. M.; Xu, X. H.; Su, B.; Wang, J. CRISPR-Cas12a-mediated hue-recognition lateral flow assay for point-of-need detection of Salmonella. Anal. Chem. 2024, 96, 220–228.
Li, T. T.; Wang, D.; Hu, J.; Fu, X.; Ji, Y. B.; Li, R. J. A promising tool for clinical diagnostics: Dual-emissive carbonized polymer dots based cross-linking enhanced emission for sensitive detection of alkaline phosphatase and butyrylcholinesterase. Biosens. Bioelectron. 2023, 238, 115576.
Han, E.; Fritzer-Szekeres, M.; Szekeres, T.; Anvari-Pirsch, A.; Gyoengyoesi, M.; Bergler-Klein, J. Agreement between high-sensitivity C-reactive protein and C-reactive protein assays. Eur. Heart. J. 2021, 42, ehab724.1084.
Sonawane, M. D.; Nimse, S. B. C-reactive protein: A major inflammatory biomarker. Anal. Methods 2017, 9, 3400–3413.
Luan, Y. Y.; Yao, Y. M. The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front. Immunol. 2018, 9, 1302.
Huang, L.; Zhang, Y. X.; Liao, T.; Xu, K.; Jiang, C. X.; Zhuo, D.; Wang, Y.; Wen, H. M.; Wang, J.; Ao, L. J. et al. Compact magneto-fluorescent colloids by hierarchical assembly of dual-components in radial channels for sensitive point-of-care immunoassay. Small 2021, 17, 2100862.
Si, H. L.; Zhou, C. H.; Wang, H. Z.; Lou, S. Y.; Li, S.; Du, Z. L.; Li, L. S. Controlled synthesis of different types iron oxides nanocrystals in paraffin oil. J. Colloid. Interface Sci. 2008, 327, 466–471.
Li, X. M.; Si, H. L.; Niu, J. Z.; Shen, H. B.; Zhou, C. H.; Yuan, H.; Wang, H. Z.; Ma, L.; Li, L. S. Size-controlled syntheses and hydrophilic surface modification of Fe3O4, Ag, and Fe3O4/Ag heterodimer nanocrystals. Dalton Trans. 2010, 39, 10984–10989.
Lv, Y. B.; Wang, F. F.; Li, N.; Wu, R. L.; Li, J. J.; Shen, H. B.; Li, L. S.; Guo, F. Development of dual quantum dots-based fluorescence-linked immunosorbent assay for simultaneous detection on inflammation biomarkers. Sens. Actuators B: Chem. 2019, 301, 127118.
Si, H. L.; Wang, H. Z.; Shen, H. B.; Zhou, C. H.; Li, S.; Lou, S. Y.; Xu, W. W.; Du, Z. L.; Li, L. S. Controlled synthesis of monodisperse manganese oxide nanocrystals. CrystEngComm 2009, 11, 1128–1132.
António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A. L. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 2020, 214, 120868.
Yang, H. J.; Kim, M. W.; Raju, C. V.; Cho, C. H.; Park, T. J.; Park, J. P. Highly sensitive and label-free electrochemical detection of C-reactive protein on a peptide receptor-gold nanoparticle-black phosphorous nanocomposite modified electrode. Biosens. Bioelectron. 2023, 234, 115382.
Ma, Y. C.; Yang, J.; Yang, T.; Deng, Y.; Gu, M. Q.; Wang, M.; Hu, R.; Yang, Y. H. Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv. 2020, 10, 9723–9729.
Wu, R. L.; Zhou, S.; Chen, T.; Li, J. J.; Shen, H. B.; Chai, Y. J.; Li, L. S. Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal. Chem. Acta 2018, 1008, 1–7.
Lv, Y. B.; Wu, R. L.; Feng, K. R.; Li, J. J.; Mao, Q.; Yuan, H.; Shen, H. B.; Chai, X. D.; Li, L. S. Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot-based fluorescence-linked immunosorbent assay. J. Nanobiotechnol. 2017, 15, 35.
Chen, X.; Liu, X. L.; Zhang, C. Y.; Meng, H.; Liu, B. W.; Wei, X. Y. A rapid fluorescent aptasensor for point-of-care detection of C-reactive protein. Talanta 2022, 249, 123661.
Dang, T.; Li, Z. Y.; Zhao, L. Y.; Zhang, W.; Huang, L. P.; Meng, F. L.; Liu, G. L.; Hu, W. J. Ultrasensitive detection of C-reactive protein by a novel nanoplasmonic immunoturbidimetry assay. Biosensors 2022, 12, 958.
Son, S. E.; Gupta, P. K.; Hur, W.; Lee, H. B.; Han, D. K.; Seong, G. H. Hollow ruthenium nanoparticles with enhanced catalytic activity for colorimetric detection of C-reactive protein. ACS Appl. Nano Mater. 2023, 6, 11435–11442.
Fan, L. Z.; Yan, W. N.; Chen, Q. L.; Tan, F.; Tang, Y. J.; Han, H. X.; Yu, R. J.; Xie, N.; Gao, S. H.; Chen, W. S. et al. One-component dual-readout aggregation-induced emission nanobeads for qualitative and quantitative detection of C-reactive protein at the point of care. Anal. Chem. 2024, 96, 401–408.
Xie, J.; Tang, M. Q.; Chen, J.; Zhu, Y. H.; Lei, C. B.; He, H. W.; Xu, X. H. A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme. Talanta 2020, 217, 121070.
Ali, G. K.; Omer, K. M. Ultrasensitive aptamer-functionalized Cu–MOF fluorescent nanozyme as an optical biosensor for detection of C-reactive protein. Anal. Biochem. 2022, 658, 114928.