The volcano plot is widely used to elucidate the activity trends among different catalysts, thereby effectively screening and guiding catalyst design. However, the inherent linear scaling relationship (LSR) constrains the breakthrough in the activity of catalysts, and the understanding of the activity limit in volcano plot is still ambiguous. In this work, by employing first-principles calculations and microkinetic modeling, we proposed coordination engineering (CE) and dual-site (DS) strategies to surpass the Sabatier’s limitation of WS2-supported TM (TM@WS2) single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (eNRR). We found that the LSR between ΔG(*N2→*N2H) and ΔG(*NH2→*NH3) was optimized to be closer to the ideal space of eNRR activity after modulating TM@WS2 SACs by these two design strategies. By combining the reaction selectivity trend plot, we picked out N-Os@WS2, C-Ir@WS2, Fe2@WS2, and Ru2@WS2 as optimal eNRR catalysts with low limiting potential (UL), and N-Os@WS2 SAC (UL: –0.28 V) outperforms the best eNRR catalyst among TM@WS2 SACs. By constructing explicit solvent models, we conducted a detailed study on the reaction kinetics of proton transfer over these four catalysts. We propose that the activity enhancement in TM@WS2 SACs for eNRR can be attributed to the ligand effect and geometric effect brought about by CE and DS strategies, improving the donation-backdonation process of electron transfer between N2 and the active sites. The designed catalyst has certain resistance to demetallization and agglomeration under simulated solvent environment. This work provides a feasible design strategy for the activity enhancement of SACs and brings a new perspective to deeply understanding the volcano plot in heterogeneous catalysis.
Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.
Wan, Y. J.; Chen, W. B.; Wu, S. Q.; Gao, S.; Xiong, F.; Guo, W. H.; Feng, L.; Cai, K. T.; Zheng, L. R.; Wang, Y. G. et al. Confinement engineering of zinc single-atom triggered charge redistribution on Ruthenium site for alkaline hydrogen production. Adv. Mater. 2024, 36, 2308798.
Hai, X.; Zheng, Y.; Yu, Q.; Guo, N.; Xi, S. B.; Zhao, X. X.; Mitchell, S.; Luo, X. H.; Tulus, V.; Wang, M. et al. Geminal-atom catalysis for cross-coupling. Nature 2023, 622, 754–760.
Chen, J. F.; Jia, M. L.; Wang, J. L.; Hu, P. J.; Wang, H. F. Breaking through the peak height limit of the volcano-shaped activity curve for metal catalysts: Role of distinct surface structures on transition metal oxides. J. Phys. Chem. C 2022, 126, 183–191.
Nwaokorie, C. F.; Montemore, M. M. Alloy catalyst design beyond the volcano plot by breaking scaling relations. J. Phys. Chem. C 2022, 126, 3993–3999.
Li, R. Y.; Wang, C. M.; Liu, Y. Z.; Suo, C. X.; Zhang, D. Y.; Zhang, J.; Guo, W. Computational screening of defective BC3-supported single-atom catalysts for electrochemical CO2 reduction. Phys. Chem. Chem. Phys. 2024, 26, 18285–18301.
Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.; Skúlason, E.; Bligaard, T.; NØrskov, J. K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 2007, 99, 016105.
Ding, J.; Li, F. H.; Zhang, J. C.; Zhang, Q.; Liu, Y. H.; Wang, W. J.; Liu, W.; Wang, B. B.; Cai, J.; Su, X. Z. et al. Circumventing CO2 reduction scaling relations over the heteronuclear diatomic catalytic pair. J. Am. Chem. Soc. 2023, 145, 11829–11836.
Liu, F.; Gao, R. J.; Shi, C. X.; Pan, L.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Avoiding Sabatier's limitation on spatially correlated Pt–Mn atomic pair sites for oxygen electroreduction. J. Am. Chem. Soc. 2023, 145, 25252–25263.
Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.
Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.
Li, W. J.; Lou, Z. X.; Yuan, H. Y.; Yang, H. G.; Wang, H. F. Oriented design of triple atom catalysts for electrocatalytic nitrogen reduction with the genetic-algorithm-based global optimization method driven by first principles calculations. J. Mater. Chem. A 2022, 10, 16106–16114.
Ye, K.; Hu, M.; Li, Q. K.; Han, Y. L.; Luo, Y.; Jiang, J.; Zhang, G. Z. Cooperative nitrogen activation and ammonia synthesis on densely monodispersed Mo-N-C sites. J. Phys. Chem. Lett. 2020, 11, 3962–3968.
Ye, K.; Hu, M.; Li, Q. K.; Luo, Y.; Jiang, J.; Zhang, G. Z. Cooperative single-atom active centers for attenuating the linear scaling effect in the nitrogen reduction reaction. J. Phys. Chem. Lett. 2021, 12, 5233–5240.
Li, R. Y.; Feng, Z.; Li, Y.; Dai, X. Q.; Ma, Y. Q.; Tang, Y. N. Bioinspired Mo tape-porphyrin as an efficient and selective electrocatalyst for ammonia synthesis. Appl. Surf. Sci. 2020, 520, 146202.
Xu, Y. K.; Cai, Z. W.; Du, P.; Zhou, J. X.; Pan, Y. H.; Wu, P.; Cai, C. X. Taming the challenges of activity and selectivity in the electrochemical nitrogen reduction reaction using graphdiyne-supported double-atom catalysts. J. Mater. Chem. A 2021, 9, 8489–8500.
Long, J.; Fu, X. Y.; Xiao, J. P. The rational design of single-atom catalysts for electrochemical ammonia synthesis via a descriptor-based approach. J. Mater. Chem. A 2020, 8, 17078–17088.
Zheng, M.; Xu, H. B.; Li, Y.; Ding, K. N.; Zhang, Y. F.; Sun, C. H.; Chen, W. K.; Lin, W. Electrocatalytic nitrogen reduction by transition metal single-atom catalysts on polymeric carbon nitride. J. Phys. Chem. C. 2021, 125, 13880–13888.
Xiao, Y.; Shen, C.; Long, T. Theoretical establishment and screening of an efficient catalyst for N2 electroreduction on two-dimensional transition-metal borides (MBenes). Chem. Mater. 2021, 33, 4023–4034.
Lin, X. Y.; Li, L. L.; Chang, X.; Pei, C. L.; Zhao, Z. J.; Gong, J. L. Black phosphorus-hosted single-atom catalyst for electrocatalytic nitrogen reduction. Sci. China Mater. 2021, 64, 1173–1181.
Qin, Y. Y.; Li, Y.; Zhao, W. S.; Chen, S. H.; Wu, T. T.; Su, Y. Q. Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction. Nano Res. 2023, 16, 325–333.
Ji, Y. F.; Liu, P. Y.; Huang, Y. G. First-principles screening of transition metal doped anatase TiO2(101) surfaces for the electrocatalytic nitrogen reduction. Phys. Chem. Chem. Phys. 2023, 25, 5827–5835.
Zhai, X. W.; Li, L.; Liu, X. Y.; Li, Y. F.; Yang, J. M.; Yang, D. Z.; Zhang, J. L.; Yan, H. X.; Ge, G. X. A DFT screening of single transition atoms supported on MoS2 as highly efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale 2020, 12, 10035–10043.
Cai, L. J.; Zhang, N.; Qiu, B. C.; Chai, Y. Computational design of transition metal single-atom electrocatalysts on PtS2 for efficient nitrogen reduction. ACS Appl. Mater. Interfaces 2020, 12, 20448–20455.
Li, R. Y.; Guo, W. Screening of transition metal single-atom catalysts supported by a WS2 monolayer for electrocatalytic nitrogen reduction reaction: Insights from activity trend and descriptor. Phys. Chem. Chem. Phys. 2022, 24, 13384–13398.
Li, L. B.; Yuan, K.; Chen, Y. W. Breaking the scaling relationship limit: From single-atom to dual-atom catalysts. Acc. Mater. Res. 2022, 3, 584–596.
Ouyang, Y. X.; Shi, L.; Bai, X. W.; Li, Q.; Wang, J. L. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 2020, 11, 1807–1813.
Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.
Mariappan, A.; Dharman, R. K.; Oh, T. H. Efficient visible light photocatalytic degradation of heavy metal pollutant using carbon doped WS2 nanostructure. Opt. Mater. 2023, 135, 113366.
Sun, C. Q.; Zhang, J. Y.; Ma, J.; Liu, P. T.; Gao, D. Q.; Tao, K.; Xue, D. S. N-doped WS2 nanosheets: A high-performance electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 11234–11238.
Cui, Q. L.; Luo, Z. Y.; Cui, Q. R.; Zhu, W.; Shou, H. W.; Wu, C. Q.; Liu, Z. F.; Lin, Y. X.; Zhang, P. J.; Wei, S. Q. et al. Robust and high photoluminescence in WS2 monolayer through in situ defect engineering. Adv. Funct. Mater. 2021, 31, 2105339.
Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.
Lou, Y.; Jiang, F.; Zhu, W.; Wang, L.; Yao, T. Y.; Wang, S. S.; Yang, B.; Yang, B.; Zhu, Y. F.; Liu, X. H. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Appl. Catal. B: Environ. 2021, 291, 120122.
Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. P. et al. Quasi-covalently coupled Ni–Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671.
Wang, X. K.; Xu, L. L.; Li, C.; Zhang, C. H.; Yao, H. X.; Xu, R.; Cui, P. X.; Zheng, X. S.; Gu, M.; Lee, J. et al. Developing a class of dual atom materials for multifunctional catalytic reactions. Nat. Commun. 2023, 14, 7210.
Chai, Y. C.; Chen, S. H.; Chen, Y.; Wei, F. F.; Cao, L. R.; Lin, J.; Li, L.; Liu, X. Y.; Lin, S.; Wang, X. D. et al. Dual-atom catalyst with N-colligated Zn1Co1 species as dominant active sites for propane dehydrogenation. J. Am. Chem. Soc. 2024, 146, 263–273.
Zheng, J. W.; Lebedev, K.; Wu, S.; Huang, C.; Ayvalı, T.; Wu, T. S.; Li, Y. Y.; Ho, P. L.; Soo, Y. L.; Kirkland, A. et al. High loading of transition metal single atoms on chalcogenide catalysts. J. Am. Chem. Soc. 2021, 143, 7979–7990.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
Li, M. Y.; Cui, Y.; Sun, L. P.; Zhang, X. L.; Peng, L.; Huang, Y. C. Boosting electrocatalytic N2 reduction to NH3 over two-dimensional gallium selenide by defect-size engineering. Inorg. Chem. 2020, 59, 4858–4867.
Huang, Y.; Yang, T. T.; Yang, L.; Liu, R.; Zhang, G. Z.; Jiang, J.; Luo, Y.; Lian, P.; Tang, S. B. Graphene-boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 2019, 7, 15173–15180.
Johnson, L. R.; Sridhar, S.; Zhang, L.; Fredrickson, K. D.; Raman, A. S.; Jang, J.; Leach, C.; Padmanabhan, A.; Price, C. C.; Frey, N. C. et al. MXene materials for the electrochemical nitrogen reduction-functionalized or not. ACS Catal. 2020, 10, 253–264.
Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.
Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed Biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.
Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.
Wang, S. H.; Wei, W.; Lv, X. S.; Huang, B. B.; Dai, Y. W supported on g-CN manifests high activity and selectivity for N2 electroreduction to NH3. J. Mater. Chem. A 2020, 8, 1378–1385.
Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2019, 3, 1800376.
Liang, X. Y.; Deng, X. X.; Guo, C.; Wu, C. M. L. Activity origin and design principles for atomic vanadium anchoring on phosphorene monolayer for nitrogen reduction reaction. Nano Res. 2020, 13, 2925–2932.
Wang, Y.; Tang, Y. J.; Zhou, K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119.
Tian, Y. M.; Hou, P. F.; Zhang, H. W.; Xie, Y.; Chen, G.; Li, Q.; Du, F.; Vojvodic, A.; Wu, J. Z.; Meng, X. Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenes. Nat. Commun. 2024, 15, 10099.
Wu, Q.; Wang, H.; Shen, S. Y.; Huang, B. B.; Dai, Y.; Ma, Y. D. Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst. J. Mater. Chem. A 2021, 9, 5434–5441.
Zhang, J.; Wang, Y.; Li, Y. F. Not one, not two, but at least three: Activity origin of copper single-atom catalysts toward CO2/CO electroreduction to C2+ products. J. Am. Chem. Soc. 2024, 146, 14954–14958.
Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9
Zhang, S. B.; Han, M. M.; Shi, T. F.; Zhang, H. M.; Lin, Y.; Zheng, X. S.; Zheng, L. R.; Zhou, H. J.; Chen, C.; Zhang, Y. X. et al. Atomically dispersed bimetallic Fe-Co electrocatalysts for green production of ammonia. Nat. Sustain. 2023, 6, 169–179.
Wang, X. N.; Tong, Y. F.; Feng, W. T.; Liu, P. Y.; Li, X. J.; Cui, Y. P.; Cai, T. H.; Zhao, L. M.; Xue, Q. Z.; Yan, Z. F. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun. 2023, 14, 3767.
Li, P.; Jiang, Y. L.; Hu, Y. C.; Men, Y.; Liu, Y. W.; Cai, W. B.; Chen, S. L. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 2022, 5, 900–911.
Li, P.; Jiao, Y. Z.; Ruan, Y. E.; Fei, H. G.; Men, Y.; Guo, C. L.; Wu, Y. E.; Chen, S. L. Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts. Nat. Commun. 2023, 14, 6936.