The oxygen evolution reaction (OER) reaction kinetics of nickel-iron (oxy)hydroxides (NiFeOOH) is limited by their weak adsorption of OER intermediates. Herein, a hierarchical NiFeOOH@CeO2−x nanosheets array was in situ grown on a nickel foam by a facile laser direct writing method, which exhibits superior OER activity and durability at high current densities in alkaline electrolytes. The hierarchical nanosheets array exposes abundant catalytic active sites, which greatly promote OER reaction rate. The strong electronic interaction at the NiFeOOH/CeO2−x interface leads to favorable electron transfer from Ni2+/3+ and Fe3+ to Ce3+/4+. The Ni sites with high valences show enhanced OH− adsorption and also promote the formation of *OOH intermediate, thereby greatly improving OER intrinsic activity. The oxygen deficient CeO2−x primary sheets guarantee good electrical conductivity. Such a well-designed catalytic electrode requires overpotentials of only 229 and 287 mV to achieve current densities of 50 and 500 mA·cm−2, respectively, and sustains superior stability at 500 mA·cm−2 and 1 A·cm−2.
Zhou, Y. N.; Li, F. T.; Dong, B.; Chai, Y. M. Double self-reinforced coordination modulation constructing stable Ni4+ for water oxidation. Energy Environ. Sci. 2024, 17, 1468–1481.
Wei, A. M.; Deng, J. J.; Lu, C.; Wang, H.; Yang, B.; Zhong, J. Fe2(MoO4)3 modified hematite with oxygen vacancies for high-efficient water oxidation. Chem. Eng. J. 2020, 395, 125127.
Qian, G. F.; Chen, J. L.; Jiang, W. J.; Yu, T. Q.; Tan, K. X.; Yin, S. B. Strong electronic coupling of CoNi and N-doped-carbon for efficient urea-assisted H2 production at a large current density. Carbon Energy 2023, 5, e368.
Li, M.; Gu, Y.; Chang, Y. J.; Gu, X. C.; Tian, J. Q.; Wu, X.; Feng, L. G. Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction. Chem. Eng. J. 2021, 425, 130686.
Lu, C.; Zhang, D.; Wu, Z. Y.; Zhao, X. Q.; Feng, K.; Zhang, G. T.; Wang, S. A.; Kang, Z. H.; Zhong, J. Hetero phase modulated hematite photoanodes for practical solar water splitting. Appl. Catal. B: Environ. 2023, 331, 122695.
Bai, L. C.; Lee, S.; Hu, X. L. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 3095–3103.
Zhang, R. R.; Han, Y.; Wu, Q. L.; Lu, M.; Liu, G. S.; Guo, Z. T.; Zhang, Y. W.; Zeng, J. R.; Wu, X. F.; Zhang, D. D. et al. Electron accumulation induced by electron injection-incomplete discharge on NiFe LDH for enhanced oxygen evolution reaction. Small 2024, 20, 2402397.
Dong, Y. W.; Liu, H. J.; Wang, X.; Wang, F. L.; Zhang, X. Y.; Lv, Q. X.; Liu, C. Y.; Chai, Y. M.; Dong, B. Manganese doping regulated the built-in electric field of FeBTC for enhanced photoelectrocatalytic hydrolysis. Appl. Catal. B: Environ. 2023, 328, 122464.
Zang, Z. H.; Ren, Y. Y.; Fan, C. Y.; Cheng, Y. H.; Li, L. L.; Yu, X. F.; Yang, X. J.; Lu, Z. M.; Zhang, X. H.; Liu, H. Constructing unsaturated coordination Co–M (M = P, S, Se, Te) bonds modified metallic Co for efficient alkaline hydrogen evolution. Appl. Catal. B: Environ. 2024, 350, 123912.
Li, M.; Wang, Y.; Zheng, Y.; Fu, G. T.; Sun, D. M.; Li, Y. F.; Tang, Y. W.; Ma, T. Y. Gadolinium-induced valence structure engineering for enhanced oxygen electrocatalysis. Adv. Energy Mater. 2020, 10, 1903833.
Steimle, B. C.; Fenton, J. L.; Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 2020, 367, 418–424.
Li, X. P.; Zheng, L. R.; Liu, S. J.; Ouyang, T.; Ye, S. Y.; Liu, Z. Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chin. Chem. Lett. 2022, 33, 4761–4765.
Shao, Y.; Xiao, X.; Zhu, Y. P.; Ma, T. Y. Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes. Angew. Chem., Int. Ed. 2019, 58, 14599–14604.
Bao, W. T.; Lu, K.; Fu, P. J.; Yang, J. F.; Tang, Y.; Sun, Y. X.; Yang, Z.; Bao, F. X.; Wang, Z. Y.; Yang, X. D. et al. Solution plasma-assisted synthesis of oxyhydroxides for advanced electrocatalytic water splitting. Chem. Eng. J. 2023, 474, 145826.
Liu, J. C.; Qian, G. F.; Yu, T. Q.; Chen, J. L.; Zhu, C. W.; Li, Y.; He, J. J.; Luo, L.; Yin, S. B. Amorphous-crystalline heterostructure for simulated practical water splitting at high-current-density. Chem. Eng. J. 2022, 431, 134247.
Hausmann, J. N.; Menezes, P. V.; Vijaykumar, G.; Laun, K.; Diemant, T.; Zebger, I.; Jacob, T.; Driess, M.; Menezes, P. W. In-liquid plasma modified nickel foam: NiOOH/NiFeOOH active site multiplication for electrocatalytic alcohol, aldehyde, and water oxidation. Adv. Energy Mater. 2022, 12, 2202098.
Jia, C. X.; Zhen, C.; Yin, L. C.; Zhu, H. Z.; Du, P. P.; Han, A. L.; Liu, G.; Cheng, H. M. Topologic transition-induced abundant undercoordinated Fe active sites in NiFeOOH for superior oxygen evolution. Nano Energy 2023, 106, 108044.
Jiao, H.; Wang, C.; Zhang, Z. Y.; Song, Y. F.; Feng, B. Q.; Na, P.; Wang, Z. L. Ultrafine NiFe-based (oxy)hydroxide nanosheet arrays with rich edge planes and superhydrophilic-superaerophobic characteristics for oxygen evolution reaction. Small 2023, 19, 2301609.
Li, J. W.; Song, J. D.; Huang, B. Y.; Liang, G. F.; Liang, W. L.; Huang, G. J.; Jin, Y. Q.; Zhang, H.; Xie, F. Y.; Chen, J. et al. Enhancing the oxygen evolution reaction performance of NiFeOOH electrocatalyst for Zn-air battery by N-doping. J. Catal. 2020, 389, 375–381.
van der Heijden, O.; Eggebeen, J. J. J.; Trzesniowski, H.; Deka, N.; Golnak, R.; Xiao, J.; van Rijn, M.; Mom, R. V.; Koper, M. T. M. Li+ Cations activate NiFeOOH for oxygen evolution in sodium and potassium hydroxide. Angew. Chem., Int. Ed. 2024, 63, e202318692.
Zhong, D. Z.; Zhang, L.; Li, C. C.; Li, D. D.; Wei, C. C.; Zhao, Q.; Li, J. P.; Gong, J. L. Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 16810–16817.
Zhang, Z. H.; Wang, C. L.; Ma, X. L.; Liu, F.; Xiao, H.; Zhang, J.; Lin, Z.; Hao, Z. P. Engineering ultrafine NiFe-LDH into self-supporting nanosheets: Separation-and-reunion strategy to expose additional edge sites for oxygen evolution. Small 2021, 17, 2103785.
Niu, S.; Jiang, W. J.; Tang, T.; Yuan, L. P.; Luo, H.; Hu, J. S. Autogenous growth of hierarchical NiFe(OH) x /FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 2019, 29, 1902180.
Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.
Chen, W. Y.; Han, B.; Xie, Y. L.; Liang, S. J.; Deng, H.; Lin, Z. Ultrathin Co–Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020, 391, 123519.
Yao, N.; Wang, G. W.; Jia, H. N.; Yin, J. L.; Cong, H. J.; Chen, S. L.; Luo, W. Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation. Angew. Chem., Int. Ed. 2022, 61, e202117178.
Shin, H.; Xiao, H.; Goddard, W. A. In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni1– x Fe x OOH) catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 6745–6748.
Lee, D.; Gao, X.; Sun, L. X.; Jee, Y.; Poplawsky, J.; Farmer, T. O.; Fan, L. S.; Guo, E. J.; Lu, Q. Y.; Heller, W. T. et al. Colossal oxygen vacancy formation at a fluorite-bixbyite interface. Nat. Commun. 2020, 11, 1371.
Obata, K.; Takanabe, K. A permselective CeO x coating to improve the stability of oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 1616–1620.
Hu, Y. M.; Liu, W. J.; Jiang, K.; Xu, L.; Guan, M. L.; Bao, J.; Ji, H. B.; Li, H. M. Constructing a CeO2– x @CoFe-layered double hydroxide heterostructure as an improved electrocatalyst for highly efficient water oxidation. Inorg. Chem. Front. 2020, 7, 4461–4468.
Du, Y.; Liu, D. P.; Li, T. Z.; Yan, Y. D.; Liang, Y.; Yan, S. C.; Zou, Z. G. A phase transformation-free redox couple mediated electrocatalytic oxygen evolution reaction. Appl. Catal. B: Environ. 2022, 306, 121146.
Jiao, H.; Wang, C.; Tian, H.; Zhang, Z. Y.; Zhao, Y.; Na, P.; Yamauchi, Y.; Wang, Z. L. Strong interaction heterointerface of NiFe oxyhydroxide/cerium oxide for efficient and stable water oxidation. Chem. Eng. J. 2024, 498, 155063.
Dong, Q. B.; Shuai, C.; Mo, Z. L.; Liu, N. J.; Liu, G. G.; Wang, J.; Pei, H. B.; Jia, Q. Q.; Liu, W. T.; Guo, X. D. CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction. J. Solid State Chem. 2021, 296, 121967.
Bose, R.; Karuppasamy, K.; Rajan, H.; Velusamy, D. B.; Kim, H. S.; Alfantazi, A. Electrodeposition of unary oxide on a bimetallic hydroxide as a highly active and stable catalyst for water oxidation. ACS Sustainable Chem. Eng. 2019, 7, 16392–16400.
Zhou, M.; Cheng, C. Q.; Dong, C. K.; Xiao, L. Y.; Zhao, Y.; Liu, Z. W.; Zhao, X. R.; Sasaki, K.; Cheng, H.; Du, X. W. et al. Dislocation network-boosted PtNi nanocatalysts welded on nickel foam for efficient and durable hydrogen evolution at ultrahigh current densities. Adv. Energy Mater. 2023, 13, 2202595.
Lin, Z.; Bu, P. P.; Xiao, Y.; Gao, Q. L.; Diao, P. β- and γ-NiFeOOH electrocatalysts for an efficient oxygen evolution reaction: An electrochemical activation energy aspect. J. Mater. Chem. A 2022, 10, 20847–20855.
Wu, L. B.; Ning, M. H.; Xing, X. X.; Wang, Y.; Zhang, F. H.; Gao, G. H.; Song, S. W.; Wang, D. Z.; Yuan, C. Q.; Yu, L. et al. Boosting oxygen evolution reaction of (Fe,Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions. Adv. Mater. 2023, 35, 2306097.
Xiao, L. Y.; Yang, T. T.; Cheng, C. Q.; Du, X. W.; Zhao, Y.; Liu, Z. W.; Zhao, X. R.; Zhang, J. T.; Zhou, M.; Han, C. Y. et al. Coupled compressive-tensile stains boosting both activity and durability of NiMo electrode for alkaline water/seawater hydrogen evolution at high current densities. Chem. Eng. J. 2024, 485, 150044.
Liu, Y.; Xiao, L. Y.; Tan, H. W.; Zhang, J. T.; Dong, C. K.; Liu, H.; Du, X. W.; Yang, J. Amorphous/crystalline phases mixed nanosheets array rich in oxygen vacancies boost oxygen evolution reaction of spinel oxides in alkaline media. Small 2024, 20, 2401504.
Zhang, Y. C.; Li, Z.; Zhang, L.; Pan, L.; Zhang, X. W.; Wang, L.; Fazal-E-Aleem, N.; Zou, J. J. Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: Experiment and DFT studies. Appl. Catal. B: Environ. 2018, 224, 101–108.
Wang, Z. Q.; Lei, Q. J.; Wang, Z. Y.; Yuan, H. M.; Cao, L. J.; Qin, N.; Lu, Z. G.; Xiao, J. X.; Liu, J. L. In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chem. Eng. J. 2020, 395, 125180.
Wang, K.; Du, H. F.; He, S.; Liu, L.; Yang, K.; Sun, J. M.; Liu, Y. H.; Du, Z. Z.; Xie, L. H.; Ai, W. et al. Kinetically controlled, scalable synthesis of γ-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: The key role of in-situ-generated γ-NiOOH. Adv. Mater. 2021, 33, 2005587.
Luo, Q. M.; Zhao, Y. W.; Sun, L.; Wang, C.; Xin, H. Q.; Song, J. X.; Li, D. Y.; Ma, F. Interface oxygen vacancy enhanced alkaline hydrogen evolution activity of cobalt-iron phosphide/CeO2 hollow nanorods. Chem. Eng. J. 2022, 437, 135376.
Wen, S. T.; Huang, J.; Li, T. T.; Chen, W.; Chen, G. L.; Zhang, Q.; Zhang, X. H.; Qian, Q. Y.; Ostrikov, K. Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient electrocatalytic overall water splitting. Appl. Catal. B: Environ. 2022, 316, 121678.
Xia, J. L.; Zhao, H. Y.; Huang, B. L.; Xu, L. L.; Luo, M.; Wang, J. W.; Luo, F.; Du, Y. P.; Yan, C. H. Efficient optimization of electron/oxygen pathway by constructing ceria/hydroxide interface for highly active oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1908367.
Zhang, J.; He, W. H.; Aiyappa, H. B.; Quast, T.; Dieckhöfer, S.; Öhl, D.; Junqueira, J. R. C.; Chen, Y. T.; Masa, J.; Schuhmann, W. Hollow CeO2@Co2N nanosheets derived from Co-ZIF-L for boosting the oxygen evolution reaction. Adv. Mater. Interfaces 2021, 8, 2100041.
Li, W. M.; Zhao, L. S.; Wang, C.; Lu, X. F.; Chen, W. Interface engineering of heterogeneous CeO2–CoO nanofibers with rich oxygen vacancies for enhanced electrocatalytic oxygen evolution performance. ACS Appl. Mater. Interfaces 2021, 13, 46998–47009.
Lu, Z.; Wang, J. K.; Zhang, P. F.; Guo, W. H.; Shen, Y. Q.; Liu, P. Z.; Ji, J. L.; Du, H. Y.; Zhao, M.; Liang, H. J. et al. Directed electron transport induced surface reconstruction of 2D NiFe-LDH/stanene heterojunction catalysts for efficient oxygen evolution. Appl. Catal. B: Environ. 2024, 353, 124073.
Liu, Y.; Liu, X. H.; Jadhav, A. R.; Yang, T.; Hwang, Y.; Wang, H. D.; Wang, L. L.; Luo, Y. G.; Kumar, A.; Lee, J. et al. Unraveling the function of metal-amorphous support interactions in single-atom electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202114160.
Habibi, E.; Razmi, H. Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media. Int. J. Hydrogen Energy 2012, 37, 16800–16809.
Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912.
He, Z. Y.; Zhang, J.; Gong, Z. H.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W.; Zhao, S. J.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.
Chen, Z. L.; Yang, H. Y.; Mebs, S.; Dau, H.; Driess, M.; Wang, Z. W.; Kang, Z. H.; Menezes, P. W. Reviving oxygen evolution electrocatalysis of bulk La–Ni intermetallics via gaseous hydrogen engineering. Adv. Mater. 2023, 35, 2208337.
Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.
Mondal, I.; Hausmann, J. N.; Vijaykumar, G.; Mebs, S.; Dau, H.; Driess, M.; Menezes, P. W. Nanostructured intermetallic nickel silicide (pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 2022, 12, 2200269.
Xu, J. C.; Wang, B. X.; Lyu, D. Y.; Wang, T. W.; Wang, Z. Y. In situ Raman investigation of the femtosecond laser irradiated NiFeOOH for enhanced electrochemical ethanol oxidation reaction. Int. J. Hydrogen Energy 2023, 48, 10724–10736.