PDF (25.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Rapid preparation of graphene-skinned glass fiber fabric based on propane as carbon source

Longfei Liu1,2Jianjian Shi3Wenjuan Li2,4Kangyi Zheng2,5Hao Yuan4Fushun Liang2,4Ruojuan Liu4Yuyao Yang2,4Fan Yang2,4Shuting Cheng6Wenjing Jiang2,7Qingxu Su2,4Jingnan Wang2Yuejie Zhao2Mengxiong Liu2Ce Tu2Mengwei Li1Xiaobai Wang7()Xiaoli Sun2()Yue Qi2()Zhongfan Liu2,4()
Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
Beijing Graphene Institute (BGI), Beijing 100095, China
School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
School of Population and Health, Renmin University of China, Beijing 100872, China
Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
Show Author Information

Graphical Abstract

View original image Download original image
In this paper, we have innovatively used a propane carbon source to rapidly grow graphene on glass fiber fabric (GFF). The high growth rate of domain area size and nucleation rate of propane carbon source result in accelerated growth rates (~ 50 times faster) compared to the conventional carbon source methane.

Abstract

Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials promises transfer-free applications of graphene. However, growing graphene on non-catalytic substrates faces significant challenges, particularly due to its limited growth rate, restricting large-scale production and potential applications. Here, we develop graphene-skinned glass fiber fabric (GGFF) by growing graphene CVD on commercial glass fiber fabric (GFF). This study utilizes propane as a carbon source to prepare GGFF rapidly. The active carbon source (C2H) derived from propane plays a significant role in facilitating the rapid growth of graphene films. It accelerated growth rates (~ 50 times faster), and reduced growth temperature (~ 100 °C lower) compared to the conventional carbon source methane. Additionally, propane consistently maintains a higher graphene growth rate than methane at equivalent growth temperatures. The lightweight flexibility, excellent thermal radiation properties, and energy efficiency of GGFF make it an outstanding material for infrared radiation drying.

Electronic Supplementary Material

Download File(s)
7217_ESM.pdf (2 MB)

References

[1]

Wang, K.; Sun, X. C.; Cheng, S. T.; Cheng, Y.; Huang, K. W.; Liu, R. J.; Yuan, H.; Li, W. J.; Liang, F. S.; Yang, Y. Y. et al. Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat. Commun. 2024, 15, 5040.

[2]

Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495.

[3]

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

[4]

Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.

[5]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[6]

Wang, K.; Cheng, S. T.; Yang, J. W.; Cheng, Y.; Ci, Q.; Yuan, H.; Huang, K. W.; Liu, R. J.; Li, W. J.; Li, J. L. et al. Bush-shaped vertical graphene/nichrome wire for blackbody-like radiative heating. Adv. Funct. Mater. 2022, 32, 2208785.

[7]

Yu, F.; Wang, K.; Cui, L. Z.; Wang, S. L.; Hou, M.; Xiong, F.; Zou, R. Q.; Gao, P.; Peng, H. L.; Liu, Z. F. Vertical-graphene-reinforced titanium alloy bipolar plates in fuel cells. Adv. Mater. 2022, 34, 2110565.

[8]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[9]

Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[10]

Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.

[11]

Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.

[12]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[13]

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Castro Neto, A. H.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

[14]

Liang, X. L.; Sperling, B. A.; Calizo, I.; Cheng, G. J.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H. L.; Li, Q. L. et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144–9153.

[15]

Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.

[16]

Chen, J. Y.; Guo, Y. L.; Jiang, L. L.; Xu, Z. P.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Hu, W. P.; Yu, G. et al. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 2014, 26, 1348–1353.

[17]

Wei, D. C.; Lu, Y. H.; Han, C.; Niu, T. C.; Chen, W.; Wee, A. T. S. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew. Chem., Int. Ed. 2013, 52, 14121–14126.

[18]

Chen, J. Y.; Guo, Y. L.; Wen, Y. G.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Luo, B. R.; Yu, G.; Liu, Y. Q. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 2013, 25, 992–997.

[19]

Wang, M.; Jang, S. K.; Jang, W. J.; Kim, M.; Park, S. Y.; Kim, S. W.; Kahng, S. J.; Choi, J. Y.; Ruoff, R. S.; Song, Y. J. et al. A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 2013, 25, 2746–2752.

[20]

Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.

[21]

Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.

[22]

Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Gao, T.; Song, X. J.; Zhang, Y. F.; Liu, Z. F. Graphene glass from direct CVD routes: Production and applications. Adv. Mater. 2016, 28, 10333–10339.

[23]

Kwak, J.; Chu, J. H.; Choi, J. K.; Park, S. D.; Go, H.; Kim, S. Y.; Park, K.; Kim, S. D.; Kim, Y. W.; Yoon, E. et al. Near room-temperature synthesis of transfer-free graphene films. Nat. Commun. 2012, 3, 645.

[24]

Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379–1384.

[25]

Guo, L. C.; Zhang, Z. Y.; Sun, H. Y.; Dai, D.; Cui, J. F.; Li, M. Z.; Xu, Y.; Xu, M. S.; Du, Y. F.; Jiang, N. et al. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. Carbon 2018, 129, 456–461.

[26]

Vang, R. T.; Honkala, K.; Dahl, S.; Vestergaard, E. K.; Schnadt, J.; Lægsgaard, E.; Clausen, B. S.; Nørskov, J. K.; Besenbacher, F. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nat. Mater. 2005, 4, 160–162.

[27]

Kim, K. B.; Lee, C. M.; Choi, J. Catalyst-free direct growth of triangular nano-graphene on all substrates. J. Phys. Chem. C 2011, 115, 14488–14493.

[28]

Miyasaka, Y.; Nakamura, A.; Temmyo, J. Graphite thin films consisting of nanograins of multilayer graphene on sapphire substrates directly grown by alcohol chemical vapor deposition. Jpn. J. Appl. Phys. 2011, 50, 04DH12.

[29]

Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 2010, 4, 4206–4210.

[30]

Xue, Y. Z.; Wu, B.; Jiang, L.; Guo, Y. L.; Huang, L. P.; Chen, J. Y.; Tan, J. H.; Geng, D. C.; Luo, B. R.; Hu, W. P. et al. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 2012, 134, 11060–11063.

[31]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[32]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[33]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[34]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[35]

Das, A.; Chakraborty, B.; Sood, A. K. Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 2008, 31, 579–584.

[36]

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

[37]

Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6, 2667–2673.

[38]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[39]

Wang, R.; Xu, Z.; Zhuang, J. H.; Liu, Z.; Peng, L.; Li, Z.; Liu, Y. J.; Gao, W. W.; Gao, C. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters. Adv. Electron. Mater. 2017, 3, 1600425.

Nano Research
Article number: 94907217
Cite this article:
Liu L, Shi J, Li W, et al. Rapid preparation of graphene-skinned glass fiber fabric based on propane as carbon source. Nano Research, 2025, 18(3): 94907217. https://doi.org/10.26599/NR.2025.94907217
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return