PDF (27.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Unveiling the mechanism of selective CO₂ hydrogenation to CO on amorphous black TiOX in thermal and photo-assisted thermal catalysis: The role of defects in amorphous structure and light irradiation

Mohammad Fereidooni1,§Mohammad Yazdanpanah1,§Victor Márquez1C. V. Paz1Martin Salazar Villanueva2Supareak Praserthdam1,3Piyasan Praserthdam1()
Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
Facultad de Ingeniería, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-39, CP 72570 Puebla, Mexico
High-Performance Computing Unit (CECC-HCU), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

§ Mohammad Fereidooni and Mohammad Yazdanpanah contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The amorphous black TiOX catalyst exhibited high selectivity towards CO during CO2 hydrogenation, primarily due to restricted hydrogen mobility on its surface. Additionally, decorating the catalyst with Ru particles significantly enhanced its stability by preventing the loss of oxygen vacancies.

Abstract

Developing catalysts capable of efficiently utilizing both visible and near-infrared wavelengths of the solar spectrum for CO2 hydrogenation has led to growing interest in reduced TiO2 materials. Achieving efficient long-wavelength solar light harvesting requires a high concentration of oxygen vacancies (OV). However, extensive OV formation can lead to atomic rearrangements within TiOX, causing a dispersion of OV throughout the material, as opposed to creating localized and distinct OV sites typical of crystalline TiOX, which interact directly with reactants. In this study, we synthesized amorphous black TiOX (AM-TiOX) catalysts and thoroughly characterized their surface properties, including acidity and the desorption bond strengths of H2 and CO2. Density functional theory (DFT) simulations were performed to analyze the hydrogen adsorption profile and structural changes in the material due to OV formation. We found that hydrogen mobility on the surface is restricted due to strong hydrogen bonding. The CO2 hydrogenation process was investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), enabling the development of a reaction pathway to elucidate the catalyst’s selectivity towards CO and the effect of light irradiation on product formation rates. Notably, m-HCO3* formation was favored, with CO and CH4 production proceeding primarily via the formate pathway. To enhance catalyst stability against oxidation during reaction, the surface was decorated with Ru particles. The findings of this study are relevant to catalysts that leverage extensive Oᵥ formation as a strategy to extend light responsiveness, as well as to the design of catalysts for CO2 hydrogenation to CO.

Electronic Supplementary Material

Download File(s)
7218_ESM.pdf (5.4 MB)

References

[1]

Yang, F. F.; Zhang, T. Y.; Zhao, J. K.; Xiao, J. W.; Zhou, W. Tuning selectivity of CO2 hydrogenation over Co catalysts by surface decoration of Sn. J. Catal. 2024, 429, 115242.

[2]

Tawalbeh, M.; Javed, R. M. N.; Al-Othman, A.; Almomani, F.; Ajith, S. Unlocking the potential of CO2 hydrogenation into valuable products using noble metal catalysts: A comprehensive review. Environ. Technol. Innov. 2023, 31, 103217.

[3]

Nagireddi, S.; Agarwal, J. R.; Vedapuri, D. Carbon dioxide capture, utilization, and sequestration: Current status, challenges, and future prospects for global decarbonization. ACS Eng. Au 2024, 4, 22–48.

[4]

Li, J. W.; Zeng, H. L.; Dong, X.; Ding, Y. M.; Hu, S. P.; Zhang, R. H.; Dai, Y. Z.; Cui, P. X.; Xiao, Z.; Zhao, D. H. et al. Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nat. Commun. 2023, 14, 340.

[5]

Wang, H. N.; Zou, Y. H.; Sun, H. X.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid-gas mode. Coord. Chem. Rev. 2021, 438, 213906.

[6]

Xiao, C. L.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review. ACS Nano 2021, 15, 7975–8000.

[7]

Xiao, Z. R.; Li, P.; Zhang, H.; Zhang, S. L.; Tan, X. Y.; Ye, F.; Gu, J. M.; Zou, J. J.; Wang, D. S. A comprehensive review on photo-thermal co-catalytic reduction of CO2 to value-added chemicals. Fuel 2024, 362, 130906.

[8]

Fan, W. K.; Tahir, M. Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: A review. Chem. Eng. J. 2022, 427, 131617.

[9]

Lv, C. C.; Bai, X. H.; Ning, S. B.; Song, C. X.; Guan, Q. Q.; Liu, B.; Li, Y. G.; Ye, J. H. Nanostructured materials for photothermal carbon dioxide hydrogenation: Regulating solar utilization and catalytic performance. ACS Nano 2023, 17, 1725–1738.

[10]

Zhou, J.; Liu, H.; Wang, H. Q. Photothermal catalysis for CO2 conversion. Chin. Chem. Lett. 2023, 34, 107420.

[11]

Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297.

[12]

Jiang, W. B.; Loh, H.; Low, B. Q. L.; Zhu, H. J.; Low, J.; Heng, J. Z. X.; Tang, K. Y.; Li, Z. B.; Loh, X. J.; Ye, E. Y. et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2023, 321, 122079.

[13]

Huang, Y. M.; Yu, Y.; Yu, Y. F.; Zhang, B. Oxygen vacancy engineering in photocatalysis. Solar RRL 2020, 4, 2000037.

[14]

Zhang, W.; Xue, J. B.; Shen, Q. Q.; Jia, S. F.; Gao, J. Q.; Liu, X. G.; Jia, H. S. Black single-crystal TiO2 nanosheet array films with oxygen vacancy on {001} facets for boosting photocatalytic CO2 reduction. J. Alloys Compd. 2021, 870, 159400.

[15]

Jin, B. B.; Ye, X.; Zhong, H.; Jin, F. M.; Hu, Y. H. Enhanced photocatalytic CO2 hydrogenation with wide-spectrum utilization over black TiO2 supported catalyst. Chin. Chem. Lett. 2022, 33, 812–816.

[16]

Zhang, Y. P.; Han, W.; Yang, Y.; Zhang, H. Y.; Wang, Y.; Wang, L.; Sun, X. J.; Zhang, F. M. S-scheme heterojunction of black TiO2 and covalent-organic framework for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 446, 137213.

[17]

Ji, M.; Kim, J. H.; Jeon, H. Y.; Han, S.; Lee, D. H.; Lee, Y. I. High-performance interfacial water evaporation of black TiO2– x with high-concentration bulk oxygen vacancies. Chem. Eng. J. 2024, 483, 149435.

[18]

Rajaraman, T. S.; Parikh, S. P.; Gandhi, V. G. Black TiO2: A review of its properties and conflicting trends. Chem. Eng. J. 2020, 389, 123918.

[19]

Wang, B.; Shen, S. H.; Mao, S. S. Black TiO2 for solar hydrogen conversion. J. Materiomics 2017, 3, 96–111.

[20]

Qian, C.; Liu, H. M.; Li, H. Y.; Wang, T.; Wang, S. Mesoporous TiO2 spheres with rich oxygen vacancies for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2024, 51, 605–614.

[21]

Gao, J. Q.; Shen, Q. Q.; Guan, R. F.; Xue, J. B.; Liu, X. G.; Jia, H. S.; Li, Q.; Wu, Y. C. Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. J. CO2 Util. 2020, 35, 205–215.

[22]

Santos, J. S.; Fereidooni, M.; Márquez, V.; Paz-López, C. V.; Villanueva, M. S.; Buijnsters, J. G.; Praserthdam, S.; Praserthdam, P. Photoactivity of amorphous and crystalline TiO2 nanotube arrays (TNA) films in gas phase CO2 reduction to methane with simultaneous H2 production. Environ. Res. 2024, 244, 117919.

[23]

Li, Y.; Zeng, Z. J.; Zhang, Y. M.; Chen, Y.; Wang, W. J.; Xu, X. M.; Du, M. Y.; Li, Z. S.; Zou, Z. G. Deactivation and stabilization mechanism of photothermal CO2 hydrogenation over black TiO2. ACS Sustainable Chem. Eng. 2022, 10, 6382–6388.

[24]

Wang, T.; Li, W. W.; Xu, D. D.; Wu, X. M.; Cao, L. W.; Meng, J. X. A novel and facile synthesis of black TiO2 with improved visible-light photocatalytic H2 generation: Impact of surface modification with CTAB on morphology, structure and property. Appl. Surf. Sci. 2017, 426, 325–332.

[25]

Zhong, J.; Xu, Z. T.; Lu, J.; Li, Y. Y. Precise electronic structures of amorphous solids: Unraveling the color origin and photocatalysis of black titania. J. Phys. Chem. C 2023, 127, 7268–7274.

[26]

Cheng, C.; Zhu, Y. H.; Fang, W. H.; Long, R.; Prezhdo, O. V. CO adsorbate promotes polaron photoactivity on the reduced rutile TiO2(110) Surface. JACS Au 2022, 2, 234–245.

[27]

Kharade, A. K.; Chang, S. M. Contributions of abundant hydroxyl groups to extraordinarily high photocatalytic activity of amorphous titania for CO2 reduction. J. Phys. Chem. C 2020, 124, 10981–10992.

[28]

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

[29]

Wang, X. H.; Lu, L.; Wang, B.; Xu, Z.; Xin, Z. Y.; Yan, S. C.; Geng, Z. R.; Zou, Z. G. Frustrated lewis pairs accelerating CO2 reduction on oxyhydroxide photocatalysts with surface lattice hydroxyls as a solid-state proton donor. Adv. Funct. Mater. 2018, 28, 1804191.

[30]

Paz, C. V.; Fereidooni, M.; Praserthdam, P.; Santiago, A. A.; Praserthdam, S.; Marquez, V. Toward the understanding of surface phenomena involved in the photocatalytic performance of amorphous TiO2/SiO2 catalyst-A theoretical and experimental study. Appl. Surf. Sci. 2022, 588, 152920.

[31]

Fereidooni, M.; Núñez, O.; Márquez, V.; Paz, C. V.; Villanueva, M. S.; Tun, M. Z.; Kanjanaboos, P.; Praserthdam, S.; Praserthdam, P. Effect of substrate conductivity on charge transfer and CO2 photoreduction in water vapor over silica-modified TiO2 films. Appl. Surf. Sci. 2023, 611, 155595.

[32]

Hu, X. L.; Li, C. Q.; Song, J. Y.; Zheng, S. L.; Sun, Z. M. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light. J. Colloid Interface Sci. 2020, 574, 61–73.

[33]

Yang, H. Y.; Zhou, J. Y.; Duan, Z. J.; Liu, X.; Deng, B.; Fang, J.; Xu, W. L. Amorphous TiO2 beats P25 in visible light photo-catalytic performance due to both total-internal-reflection boosted solar photothermal conversion and negative temperature coefficient of the forbidden bandwidth. Appl. Catal. B: Environ. 2022, 310, 121299.

[34]

Dorosheva, I. B.; Kremneva, A. M.; Kaichev, V. V.; Valeeva, A. A.; Rempel, A. A. XAS study of sol-gel synthesized amorphous and anatase TiO2 nanoparticles. Mendeleev Commun. 2024, 34, 224–225.

[35]

Luca, V.; Djajanti, S.; Howe, R. F. Structural and electronic properties of sol-gel titanium oxides studied by X-ray absorption spectroscopy. J. Phys. Chem. B 1998, 102, 10650–10657.

[36]

Triana, C. A.; Araujo, C. M.; Ahuja, R.; Niklasson, G. A.; Edvinsson, T. Electronic transitions induced by short-range structural order in amorphous TiO2. Phys. Rev. B 2016, 94, 165129.

[37]

Deng, H.; Yuan, L. Y.; Li, Z. J.; Wang, D. G.; Wang, X. C.; Liang, P. L.; Wang, L.; Liu, Y. C.; Fu, Y. J.; Chang, Z. Y. et al. A hybrid amorphous/crystalline TiO2 material with enhanced photocatalytic performance. Adv. Sustainable Syst. 2022, 6, 2200316.

[38]

Yadav, A. K.; Haque, S. M.; Shukla, D. K.; Phase, D. M.; Jha, S. N.; Bhattacharyya, D. Local structural investigations of Fe-doped TiO2 amorphous thin films. Thin Solid Films 2020, 716, 138435.

[39]

Li, J.; Liu, J.; Sun, Q.; Banis, M. N.; Sun, X. L.; Sham, T. K. Tracking the effect of sodium insertion/extraction in amorphous and anatase TiO2 nanotubes. J. Phys. Chem. C 2017, 121, 11773–11782.

[40]

Carta, D.; Mountjoy, G.; Regoutz, A.; Khiat, A.; Serb, A.; Prodromakis, T. X-ray absorption spectroscopy study of TiO2– x thin films for memory applications. J. Phys. Chem. C 2015, 119, 4362–4370.

[41]

Yuan, C. F.; Shen, Y. L.; Zhu, C. Y.; Zhu, P.; Yang, F.; Liu, J. H.; An, C. H. Ru single-atom decorated black TiO2 nanosheets for efficient solar-driven hydrogen production. ACS Sustainable Chem. Eng. 2022, 10, 10311–10317.

[42]

Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684–15693.

[43]

Min, B. K.; Nguyen, V. T.; Kim, S. J.; Yi, Y.; Choi, C. G. Surface plasmon resonance-enhanced near-infrared absorption in single-layer MoS2 with vertically aligned nanoflakes. ACS Appl. Mater. Interfaces 2020, 12, 14476–14483.

[44]

Bang, S.; Lee, S.; Park, T.; Ko, Y.; Shin, S.; Yim, S. Y.; Seo, H.; Jeon, H. Dual optical functionality of local surface plasmon resonance for RuO2 nanoparticle-ZnO nanorod hybrids grown by atomic layer deposition. J. Mater. Chem. 2012, 22, 14141–14148.

[45]

Foo, C.; Li, Y. Y.; Lebedev, K.; Chen, T. Y.; Day, S.; Tang, C.; Tsang, S. C. E. Characterisation of oxygen defects and nitrogen impurities in TiO2 photocatalysts using variable-temperature X-ray powder diffraction. Nat. Commun. 2021, 12, 661.

[46]

Dong, J. Y.; Han, J.; Liu, Y. S.; Nakajima, A.; Matsushita, S.; Wei, S. H.; Gao, W. Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 1385–1388.

[47]

Fittipaldi, M.; Gatteschi, D.; Fornasiero, P. The power of EPR techniques in revealing active sites in heterogeneous photocatalysis: The case of anion doped TiO2. Catal. Today 2013, 206, 2–11.

[48]

Behnajady, M. A.; Eskandarloo, H.; Modirshahla, N.; Shokri, M. Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 2011, 278, 10–17.

[49]

He, H. Y.; Barr, T. L.; Klinowski, J. ESCA studies of framework silicates with the sodalite structure. 2. Ultramarine. J. Phys. Chem. 1994, 98, 8124–8127.

[50]

Du, H. H.; Tressler, R. E.; Spear, K. E.; Pantano, C. G. Oxidation studies of crystalline CVD silicon nitride. J. Electrochem. Soc. 1989, 136, 1527–1536.

[51]

Kaur, A.; Chahal, P.; Hogan, T. Selective fabrication of SiC/Si diodes by excimer laser under ambient conditions. IEEE Electron Device Lett. 2016, 37, 142–145.

[52]

Puppin, E.; Lindau, I.; Abbati, I. Photoemission core level shifts in Gd silicides. Solid State Commun. 1991, 77, 983–986.

[53]

Billo, T.; Fu, F. Y.; Raghunath, P.; Shown, I.; Chen, W. F.; Lien, H. T.; Shen, T. H.; Lee, J. F.; Chan, T. S.; Huang, K. Y. et al. Artificial photosynthesis: Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction (Small 2/2018). Small 2018, 14, 1870008.

[54]

Yazdanpanah, M.; Fereidooni, M.; Márquez, V.; Paz, C. V.; Saelee, T.; Villanueva, M. S.; Rittiruam, M.; Khajondetchairit, P.; Praserthdam, S.; Praserthdam, P. The underlying catalytic role of oxygen vacancies in fatty acid methyl esters ketonization over TiO x catalysts. ChemSusChem 2024, 17, e202301033.

[55]

Zhao, J.; Li, Y. X.; Zhu, Y. Q.; Wang, Y.; Wang, C. Y. Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Appl. Catal. A: Gen. 2016, 510, 34–41.

[56]

Fu, F. Y.; Shown, I.; Li, C. S.; Raghunath, P.; Lin, T. Y.; Billo, T.; Wu, H. L.; Wu, C. I.; Chung, P. W.; Lin, M. C. et al. KSCN-induced interfacial dipole in black TiO2 for enhanced photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 25186–25194.

[57]

Han, L. J.; Su, B. T.; Liu, G.; Ma, Z.; An, X. C. Synthesis of oxygen vacancy-rich black TiO2 nanoparticles and the visible light photocatalytic performance. Mol. Catal. 2018, 456, 96–101.

[58]

Lin, Z.; Lee, G. H.; Liu, C. M.; Lee, I. S. Controls in wettability of TiO x films for biomedical applications. Surf. Coat. Technol. 2010, 205, S391–S397.

[59]

Zimbone, M.; Cacciato, G.; Sanz, R.; Carles, R.; Gulino, A.; Privitera, V.; Grimaldi, M. G. Black TiO x photocatalyst obtained by laser irradiation in water. Catal. Commun. 2016, 84, 11–15.

[60]

Zimbone, M.; Cacciato, G.; Boutinguiza, M.; Gulino, A.; Cantarella, M.; Privitera, V.; Grimaldi, M. G. Hydrogenated black-TiO x : A facile and scalable synthesis for environmental water purification. Catal. Today 2019, 321–322, 146–157.

[61]

Schulze, P. D.; Shaffer, S. L.; Hance, R. L.; Utley, D. L. Adsorption of water on rhenium studied by XPS. J. Vac. Sci. Technol. A 1983, 1, 97–99.

[62]

Ye, R. P.; Ding, J.; Gong, W. B.; Argyle, M. D.; Zhong, Q.; Wang, Y. J.; Russell, C. K.; Xu, Z. H.; Russell, A. G.; Li, Q. H. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698.

[63]

Shu, Y. J.; Ji, J.; Zhou, M.; Liang, S. M.; Xie, Q.; Li, S. T.; Liu, B. Y.; Deng, J. G.; Cao, J. P.; Liu, S. W. et al. Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2. Appl. Catal. B: Environ. 2022, 300, 120688.

[64]

Cao, L.; Chen, L.; Wu, X. D.; Ran, R.; Xu, T. F.; Chen, Z.; Weng, D. TRA and DRIFTS studies of the fast SCR reaction over CeO2/TiO2 catalyst at low temperatures. Appl. Catal. A: Gen. 2018, 557, 46–54.

[65]

Fan, J.; Ning, P.; Song, Z. X.; Liu, X.; Wang, L. Y.; Wang, J.; Wang, H. M.; Long, K. X.; Zhang, Q. L. Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42– catalyst: In situ DRIFTS investigation. Chem. Eng. J. 2018, 334, 855–863.

[66]

Feng, X.; Han, Z. T.; Li, C. L.; Liu, T. J. Investigation of the promotional effect of W modification on selective catalytic reduction performance of Ce0.4ZrO x catalysts. Energy Fuels 2024, 38, 6269–6280.

[67]

Liu, Z. M.; Zhang, S. X.; Li, J. H.; Ma, L. L. Promoting effect of MoO3 on the NO x reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. Appl. Catal. B: Environ. 2014, 144, 90–95.

[68]

Zhu, F.; Wang, Z. Q.; Huang, J. C.; Hu, W.; Xie, D.; Qiao, Y. Efficient adsorption of ammonia on activated carbon from hydrochar of pomelo peel at room temperature: Role of chemical components in feedstock. J. Clean. Prod. 2023, 406, 137076.

[69]

Barzetti, T.; Selli, E.; Moscotti, D.; Forni, L. Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J. Chem. Soc., Faraday Trans. 1996, 92, 1401–1407.

[70]

Chen, L.; Si, Z. C.; Wu, X. D.; Weng, D. DRIFT study of CuO–CeO2–TiO2 mixed oxides for NO x reduction with NH3 at low temperatures. ACS Appl. Mater. Interfaces 2014, 6, 8134–8145.

[71]

Michalow-Mauke, K. A.; Lu, Y.; Kowalski, K.; Graule, T.; Nachtegaal, M.; Kröcher, O.; Ferri, D. Flame-made WO3/CeO x -TiO2 catalysts for selective catalytic reduction of NO x by NH3. ACS Catal. 2015, 5, 5657–5672.

[72]

Tuntithavornwat, S.; Saisawang, C.; Ratvijitvech, T.; Watthanaphanit, A.; Hunsom, M.; Kannan, A. M. Recent development of black TiO2 nanoparticles for photocatalytic H2 production: An extensive review. Int. J. Hydrogen Energy 2024, 55, 1559–1593.

[73]

Ouslimane, T.; Et-Taya, L.; Elmaimouni, L.; Benami, A. Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon 2021, 7, e06379.

[74]

Balog, Á.; Samu, G. F.; Pető, S.; Janáky, C. The mystery of black TiO2: Insights from combined surface science and in situ electrochemical methods. ACS Mater. Au 2021, 1, 157–168.

[75]

Saidi, F.; Mahmoudi, A.; Laidi, K.; Hidouri, T.; Nasr, S. Structural, electronic and optical properties of M-doped anatase TiO2 (M = Fe or Au): A first principle investigation. Comput. Condens. Matter 2021, 28, e00576.

[76]

Thaines, E. H. N. S.; Oliveira, A. C.; Pocrifka, L. A.; Duarte, H. A.; Freitas, R. G. Influence of Fe-doping on the structural and electronic properties of the TiO2 anatase: Rutile. J. Phys. Chem. C 2023, 127, 22518–22529.

[77]

Zhang, C. C.; Wang, L. T.; Etim, U. J.; Song, Y. B.; Gazit, O. M.; Zhong, Z. Y. Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol. J. Catal. 2022, 413, 284–296.

[78]

Li, Q.; Wang, C. Q.; Wang, H. L.; Chen, J.; Chen, J.; Jia, H. P. Disclosing support-size-dependent effect on ambient light-driven photothermal CO2 hydrogenation over nickel/titanium dioxide. Angew. Chem., Int. Ed. 2024, 63, e202318166.

[79]

Ghampson, I. T.; Pecchi, G.; Fierro, J. L. G.; Videla, A.; Escalona, N. Catalytic hydrodeoxygenation of anisole over Re-MoO x /TiO2 and Re-VO x /TiO2 catalysts. Appl. Catal. B: Environ. 2017, 208, 60–74.

[80]

Zhao, H. B.; Yu, R. F.; Ma, S. C.; Xu, K. Z.; Chen, Y.; Jiang, K.; Fang, Y.; Zhu, C. X.; Liu, X. C.; Tang, Y. et al. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat. Catal. 2022, 5, 818–831.

[81]

Wang, Y. H.; Liu, Y.; Tan, L.; Lin, X. H.; Fang, Y. X.; Lu, X. F.; Hou, Y. D.; Zhang, G. G.; Wang, S. B. Confining ultrafine Pt nanoparticles on In2O3 nanotubes for enhanced selective methanol production by CO2 hydrogenation. J. Mater. Chem. A 2023, 11, 26804–26811.

[82]

Cárdenas-Arenas, A.; Quindimil, A.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R.; Bueno-López, A. Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Appl. Catal. B: Environ. 2020, 265, 118538.

[83]

Phongprueksathat, N.; Ting, K. W.; Mine, S.; Jing, Y.; Toyoshima, R.; Kondoh, H.; Shimizu, K. I.; Toyao, T.; Urakawa, A. Bifunctionality of Re supported on TiO2 in driving methanol formation in low-temperature CO2 hydrogenation. ACS Catal. 2023, 13, 10734–10750.

[84]

Pérez-Hernández, R.; Martínez, A. G.; Galicia, G. M.; García, M. E. F.; Nuñez, O. C.; Hernández, M. V.; López, P.; Wing, C. E. G. Carbon cycle using the CO2 conversion to methane as environmental feasibility on Ni/TiO2–Na nanotubes catalysts. Renew. Energy 2023, 217, 119145.

[85]

Zhang, D.; Li, B. H.; Li, Y. L.; Zhao, J.; Wang, X. J.; Li, F. T. Efficient photocatalytic CO2 methanation via promoted conversion of bridge *CO over surface K+ on ultrathin TiO2. Mol. Catal. 2023, 549, 113467.

[86]

Vrijburg, W. L.; Moioli, E.; Chen, W.; Zhang, M.; Terlingen, B. J. P.; Zijlstra, B.; Filot, I. A. W.; Züttel, A.; Pidko, E. A.; Hensen, E. J. M. Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation. ACS Catal. 2019, 9, 7823–7839.

[87]

Zhou, Z.; Li, J. J.; You, Z. X. A facile TiO2 containing oxygen vacancies and hydroxyl as a Ru-loaded underlay for CO2 hydrogenation to CH4. Appl. Surf. Sci. 2022, 587, 152856.

[88]

Zhang, Z. H.; Zhang, L. Y.; Yao, S. Y.; Song, X. Z.; Huang, W. X.; Hülsey, M. J.; Yan, N. Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts. J. Catal. 2019, 376, 57–67.

[89]

Wang, C. F.; Lu, Y. L.; Zhang, Y.; Fu, H.; Sun, S. Z.; Li, F.; Duan, Z. Y.; Liu, Z.; Wu, C. F.; Wang, Y. H. et al. Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites. Nano Res. 2023, 16, 12153–12164.

[90]

Cui, W. G.; Zhuang, X. Y.; Li, Y. T.; Zhang, H. B.; Dai, J. J.; Zhou, L.; Hu, Z. P.; Hu, T. L. Engineering Co/MnO heterointerface inside porous graphitic carbon for boosting the low-temperature CO2 methanation. Appl. Catal. B: Environ. 2021, 287, 119959.

[91]

Zhao, Z. Y.; Jiang, Q. R.; Wang, Q. X.; Wang, M. Z.; Zuo, J. C.; Chen, H. M.; Kuang, Q.; Xie, Z. X. Effect of rutile content on the catalytic performance of Ru/TiO2 catalyst for low-temperature CO2 methanation. ACS Sustainable Chem. Eng. 2021, 9, 14288–14296.

[92]

Raskó, J.; Kiss, J. Surface species and gas phase products in the preferential oxidation of CO on TiO2-supported Au-Rh bimetallic catalysts. React. Kinet. Catal. Lett. 2007, 90, 389–399.

[93]

Han, C. Q.; Zhang, R. M.; Ye, Y. H.; Wang, L.; Ma, Z. Y.; Su, F. Y.; Xie, H. Q.; Zhou, Y.; Wong, P. K.; Ye, L. Q. Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4. J. Mater. Chem. A 2019, 7, 9726–9735.

[94]

Ting, K. W.; Toyao, T.; Siddiki, S. M. A. H.; Shimizu, K. I. Low-temperature hydrogenation of CO2 to methanol over heterogeneous TiO2-supported Re catalysts. ACS Catal. 2019, 9, 3685–3693.

[95]

Yang, B.; Wang, Y. F.; Gao, B.; Zhang, L. X.; Guo, L. M. Size-dependent active site and its catalytic mechanism for CO2 hydrogenation reactivity and selectivity over Re/TiO2. ACS Catal. 2023, 13, 10364–10374.

[96]

Shi, X. Y.; Zhang, C. B.; He, H.; Shou, M.; Tanaka, K. I.; Sugihara, S.; Ando, Y. Activation of Pt/TiO2 catalysts by structural transformation of Pt-sites. Catal. Lett. 2006, 107, 1–4.

[97]

Wang, K.; Jiang, R. M.; Peng, T.; Chen, X.; Dai, W. X.; Fu, X. Z. Modeling the effect of Cu doped TiO2 with carbon dots on CO2 methanation by H2O in a photo-thermal system. Appl. Catal. B: Environ. 2019, 256, 117780.

[98]

Zhang, H. N.; Li, Y. F.; Wang, J. Z.; Wu, N. N.; Sheng, H.; Chen, C. C.; Zhao, J. C. An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2. Appl. Catal. B: Environ. 2021, 284, 119692.

[99]

Zhang, Z. L.; Kladi, A.; Verykios, X. E. Surface species formed during CO and CO2 hydrogenation over Rh/TiO2 (W6+) catalysts investigated by FTIR and mass-spectroscopy. J. Catal. 1995, 156, 37–50.

[100]

Han, B.; Guo, Y. L.; Huang, Y. K.; Xi, W.; Xu, J.; Luo, J.; Qi, H. F.; Ren, Y. J.; Liu, X. Y.; Qiao, B. T. et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. 2020, 59, 11824–11829.

Nano Research
Article number: 94907218
Cite this article:
Fereidooni M, Yazdanpanah M, Márquez V, et al. Unveiling the mechanism of selective CO₂ hydrogenation to CO on amorphous black TiOX in thermal and photo-assisted thermal catalysis: The role of defects in amorphous structure and light irradiation. Nano Research, 2025, 18(3): 94907218. https://doi.org/10.26599/NR.2025.94907218
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return