PDF (14.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Weakly solvating electrolyte enabling solvent-free co-intercalation for stable potassium-ion storage in graphite

Chaojie Cheng1Wencong Feng1Feiyue Wang1Jingke Ren1Deyang Guan2Wei Chen1Jean-Jacques Gaumet1,3Kai Fu1 ()Xiaobin Liao1 ()Wen Luo1 ()
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
School of Materials Science and Engineering, Xinjiang University, Urumqi 830017, China
Laboratoire de Chimie et Physique: Approche Multi-échelles, des Milieux Complexes (LCP-A2MC), Institut Jean Barriol, Université de Lorraine, Metz 57070, France
Show Author Information

Graphical Abstract

View original image Download original image
Solvent-free co-intercalation enables stable potassium ion storage in graphite anode. A long lifespan of 800 cycles at 0.2 C with a capacity of 171.8 mAh·g–1 is retained.

Abstract

Ether electrolytes for potassium-ion batteries exhibit a broader electrochemical window and greater applicability, yet most of them are high-concentration electrolytes with elevated cost. In this study, we propose the use of a weakly solvating cyclic ether electrolyte with tetrahydropyran (THP) as the solvent. This approach induces the formation of a thin and dense inorganic-rich solid electrolyte interphase (SEI) film, which is accompanied by a decrease in the activation energy of electrode interfacial reactions due to the weak ligand binding of THP with K+. Density functional theory (DFT) simulations also corroborate the hypothesis that K+ has a lower binding energy with THP. During potassium storage process, the phenomenon of solvent co-intercalation of graphite does not occur, which greatly reduces the destruction of the graphite structure and enables a superior electrochemical performance and enhanced cycling stability at a lower concentration (2 M). At a current density of 0.2 C (55.8 mA·g–1), the battery can be stably cycled for 800 cycles (approximately 8 months) with a specific capacity of 171.8 mAh·g–1. This study provides a new ether-based electrolyte for potassium ion batteries and effectively reduces the electrolyte cost, which is expected to inspire further development of energy storage batteries.

Electronic Supplementary Material

Download File(s)
7219_ESM.pdf (3.7 MB)

References

[1]

Gür, T. M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767.

[2]

Eftekhari, A.; Jian, Z. L.; Ji, X. L. Potassium secondary batteries. ACS Appl. Mater. Interfaces 2017, 9, 4404–4419.

[3]

Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. G. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

[4]

Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623.

[5]

Wang, L.; Zhang, B.; Wang, B.; Zeng, S. Y.; Zhao, M. W.; Sun, X. P.; Zhai, Y. J.; Xu, L. Q. In-situ nano-crystallization and solvation modulation to promote highly stable anode involving alloy/de-alloy for potassium ion batteries. Angew. Chem., Int. Ed. 2021, 60, 15381–15389.

[6]

Xu, F.; Zhai, Y. X.; Zhang, E.; Liu, Q. H.; Jiang, G. S.; Xu, X. S.; Qiu, Y. Q.; Liu, X. M.; Wang, H. Q.; Kaskel, S. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets. Angew. Chem., Int. Ed. 2020, 59, 19460–19467.

[7]

Wu, X. Y.; Leonard, D. P.; Ji, X. L. Emerging non-aqueous potassium-ion batteries: Challenges and opportunities. Chem. Mater. 2017, 29, 5031–5042.

[8]

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

[9]

Wang, Z. H.; Selbach, S. M.; Grande, T. Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. RSC Adv. 2014, 4, 4069–4079.

[10]

Wu, X. F.; Li, Z. J.; Liu, J. X.; Luo, W.; Gaumet, J. J.; Mai, L. Q. Defect engineering of hierarchical porous carbon microspheres for potassium-ion storage. Rare Met. 2022, 41, 3446–3455.

[11]

Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

[12]

Liu, Q.; Fan, L.; Chen, S. H.; Su, S. L.; Ma, R. F.; Han, X.; Lu, B. Antimony-graphite composites for a high-performance potassium-ion battery. Energy Technol. 2019, 7, 1900634.

[13]

Feng, W. C.; Pan, C. Q.; Wang, H.; Zhang, B. L.; Luo, W.; Shen, C. L.; Wang, J. J.; Cheng, C. J.; Xv, X. M.; Yu, R. H. et al. Molecular carbon skeleton with self-regulating ion-transport channels for long-life potassium ion batteries. Energy Storage Mater. 2023, 63, 102975.

[14]

Wang, F. Y.; Yang, T.; Feng, W. C.; Ren, J. K.; Chen, X. B.; Cheng, C. J.; Luo, W.; Liao, X. B.; Mai, L. Q. Homogeneous adsorption of multiple potassiation products of red phosphorus anode toward stable potassium storage. ACS Nano 2024, 18, 17197–17208.

[15]

Feng, W. C.; Wang, H.; Jiang, Y. L.; Zhang, H. Z.; Luo, W.; Chen, W.; Shen, C. L.; Wang, C. X.; Wu, J. S.; Mai, L. Q. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv. Energy Mater. 2022, 12, 2103343.

[16]

Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.

[17]

Li, T.; Wang, Y. K.; Zhou, Q. W.; Yuan, L. L.; Qiao, S. Y.; Ma, M.; Liu, Z. Q.; Chong, S. K. SnTe nanoparticles physicochemically encapsulated by double carbon as conversion-alloying anode materials for superior potassium-ion batteries. J. Mater. Sci. Technol. 2023, 158, 86–95.

[18]

Wen, S.; Gu, X.; Ding, X. W.; Dai, P. C.; Zhang, D. J.; Li, L. J.; Liu, D. D.; Zhao, X. B.; Yang, J. Boosting fast and stable alkali metal ion storage by synergistic engineering of oxygen vacancy and amorphous structure. Adv. Funct. Mater. 2022, 32, 2106751.

[19]

Wen, S.; Gu, X.; Ding, X. W.; Zhang, L.; Dai, P. C.; Li, L. J.; Liu, D. D.; Zhang, W. C.; Zhao, X. B.; Guo, Z. P. Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering. Nano Res. 2022, 15, 2083–2091.

[20]

Sun, Z. N.; Liang, H. Y.; Wang, H. L.; Shi, J.; Huang, M. H.; Chen, J. W.; Liu, S.; Tian, W. Q.; Cao, H. J.; Li, Z. Spatially confined “edge-to-edge” strategy for achieving compact Na+/K+ storage: Constructing hetero-Ni/Ni3S2 in densified carbons. Adv. Funct. Mater. 2022, 32, 2203291.

[21]

Luo, W. D.; Feng, Y. H.; Shen, D. Y.; Zhou, J.; Gao, C. T.; Lu, B. G. Engineering ion diffusion by CoS@SnS heterojunction for ultrahigh-rate and stable potassium batteries. ACS Appl. Mater. Interfaces 2022, 14, 16379–16385.

[22]

Li, T.; Zhang, Q. Advanced metal sulfide anode for potassium ion batteries. J. Energy Chem. 2018, 27, 373–374.

[23]

Zhang, B.; Xu, B. H.; Qin, H. Z.; Cao, L.; Ou, X. Highly active and stable Cu9S5-MoS2 heterostructures nanocages enabled by dual-functional Cu electrocatalyst with enhanced potassium storage. J. Mater. Sci. Technol. 2023, 143, 107–116.

[24]

Zhou, M. F.; Bai, P. X.; Ji, X.; Yang, J. X.; Wang, C. S.; Xu, Y. H. Electrolytes and interphases in potassium ion batteries. Adv. Mater. 2021, 33, 2003741.

[25]

Wang, L. P.; Yang, J. Y.; Li, J.; Chen, T.; Chen, S. L.; Wu, Z. R.; Qiu, J. L.; Wang, B. J.; Gao, P.; Niu, X. B. et al. Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 2019, 409, 24–30.

[26]

Zhang, J. M.; Li, Q. P.; Zeng, Y. P.; Tang, Z.; Sun, D.; Huang, D.; Peng, Z. G.; Tang, Y. G.; Wang, H. Y. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Mater. 2022, 51, 660–670.

[27]

Liao, Y. Q.; Zhou, M. Y.; Yuan, L. X.; Huang, K.; Wang, D. H.; Han, Y.; Meng, J. T.; Zhang, Y.; Li, Z.; Huang, Y. H. Eco-friendly tetrahydropyran enables weakly solvating “4S” electrolytes for lithium-metal batteries. Adv. Energy Mater. 2023, 13, 2301477.

[28]

Hu, X. X.; Zheng, H. P.; Tao, R.; Wang, P. Migration of nitrite corrosion inhibitor in calcium silicate hydrate nanopore: A molecular dynamics simulation study. Front. Mater. 2022, 9, 965772.

[29]

Li, Q.; Zhang, Y. B.; Chen, Z. Y.; Zhang, J.; Tao, Y.; Yang, Q. H. Discrete graphitic crystallites promise high-rate ion intercalation for KC8 formation in potassium ion batteries. Adv. Energy Mater. 2022, 12, 2201574.

[30]

Liang, L.; Tang, M. Y.; Zhu, Q. N.; Wei, W.; Wang, S. C.; Wang, J. W.; Chen, J. C.; Yu, D. D.; Wang, H. Chemical prepotassiation realizes scalable KC8 foil anodes for potassium-ion pouch cells. Adv. Energy Mater. 2023, 13, 2300453.

[31]

Liu, K.; Gao, Y. F.; Fang, Z. Y.; Zhou, X. Y.; Ma, Y.; Wu, H. Y.; Kang, M. L.; Wang, B. Determination of diffusion coefficients of uranium in liquid gallium by GITT. J. Electroanal. Chem. 2020, 879, 114711.

[32]

Heubner, C.; Schneider, M.; Michaelis, A. SoC dependent kinetic parameters of insertion electrodes from staircase-GITT. J. Electroanal. Chem. 2016, 767, 18–23.

[33]

Jiang, H. Z.; Yang, C.; Chen, M.; Liu, X. W.; Yin, L. M.; You, Y.; Lu, J. Electrophilically trapping water for preventing polymerization of cyclic ether towards low-temperature li metal battery. Angew. Chem., Int. Ed. 2023, 62, e202300238.

[34]

Cheng, L. W.; Lan, H.; Gao, Y.; Dong, S.; Wang, Y. Y.; Tang, M. Y.; Sun, X. Y.; Huang, W. R.; Wang, H. Realizing low-temperature graphite-based rechargeable potassium-ion full battery. Angew. Chem. 2024, 136, e202315624.

[35]

Yaghoobnejad Asl, H.; Stanley, P.; Ghosh, K.; Choudhury, A. Iron borophosphate as a potential cathode for lithium- and sodium-ion batteries. Chem. Mater. 2015, 27, 7058–7069.

[36]

Zabara, M. A.; Katırcı, G.; Ülgüt, B. Operando investigations of the interfacial electrochemical kinetics of metallic lithium anodes via temperature-dependent electrochemical impedance spectroscopy. J. Phys. Chem. C 2022, 126, 10968–10976.

[37]

Weng, S. T.; Zhang, X.; Yang, G. J.; Zhang, S. M.; Ma, B. Y.; Liu, Q. Y.; Liu, Y.; Peng, C. X.; Chen, H. X.; Yu, H. L. et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 2023, 14, 4474.

[38]

Li, X. Y.; Feng, S.; Song, Y. W.; Zhao, C. X.; Li, Z.; Chen, Z. X.; Cheng, Q.; Chen, X.; Zhang, X. Q.; Li, B. Q. et al. Kinetic evaluation on lithium polysulfide in weakly solvating electrolyte toward practical lithium-sulfur batteries. J. Am. Chem. Soc. 2024, 146, 14754–14764.

[39]

Qiu, D. P.; Zhao, W. T.; Zhang, B.; Ahsan, M. T.; Wang, Y. H.; Zhang, L. L.; Yang, X. L.; Hou, Y. L. Ni-single atoms modification enabled kinetics enhanced and ultra-stable hard carbon anode for sodium-ion batteries. Adv. Energy Mater. 2024, 14, 2400002.

[40]

Kitz, P. G.; Lacey, M. J.; Novák, P.; Berg, E. J. Operando EQCM-D with simultaneous in situ EIS: New insights into interphase formation in Li ion batteries. Anal. Chem. 2019, 91, 2296–2303.

[41]

Lu, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022, 6, 1172–1198.

[42]

Wan, T. H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools. Electrochim. Acta 2015, 184, 483–499.

[43]

Weiß, A.; Schindler, S.; Galbiati, S.; Danzer, M. A.; Zeis, R. Distribution of relaxation times analysis of high-temperature PEM fuel cell impedance spectra. Electrochim. Acta 2017, 230, 391–398.

[44]

Chen, J.; Quattrocchi, E.; Ciucci, F.; Chen, Y. H. Charging processes in lithium-oxygen batteries unraveled through the lens of the distribution of relaxation times. Chem 2023, 9, 2267–2281.

[45]

Schönleber, M.; Klotz, D.; Ivers-Tiffée, E. A method for improving the robustness of linear kramers-kronig validity tests. Electrochim. Acta 2014, 131, 20–27.

[46]

Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.

[47]

Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

[48]

Zvereva, E.; Caliste, D.; Pochet, P. Interface identification of the solid electrolyte interphase on graphite. Carbon 2017, 111, 789–795.

[49]

Chen, Y. Y.; Huang, H. Y.; Liu, L. L.; Chen, Y. X.; Han, Y. S. Diffusion enhancement to stabilize solid electrolyte interphase. Adv. Energy Mater. 2021, 11, 2101774.

Nano Research
Article number: 94907219
Cite this article:
Cheng C, Feng W, Wang F, et al. Weakly solvating electrolyte enabling solvent-free co-intercalation for stable potassium-ion storage in graphite. Nano Research, 2025, 18(3): 94907219. https://doi.org/10.26599/NR.2025.94907219
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return