PDF (21.6 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Research Article | Open Access

Competitive coordination enhancing the thermal stability of PDOL electrolytes for safe solid-state lithium metal batteries

Ying-Ying Pei1,2,§Jiang-Kui Hu1,2,§Hong Yuan1,2()Shi-Jie Yang1,2Xi-Long Wang1,2Zheng Liao1,2Jia Liu3Bo-Quan Li1,2()Jia-Qi Huang1,2()
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China

§ Ying-Ying Pei and Jiang-Kui Hu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A competitive coordination mechanism is proposed to enhance the thermal stability of poly(1,3-dioxolane) (PDOL) electrolytes, which is based on strong Lewis acid–base interactions between the surface Lewis base sites on Li6.75La3Zr1.75Ta0.25O12 (LLZTO) and solvated Li+. This interaction strengthens the bond energy of –C–O–C– bonds and weakens the ionic–dipolar interactions between Li+ and PDOL chains.

Abstract

Poly(1,3-dioxolane) (PDOL)-based solid electrolytes hold great potential for solid-state lithium (Li) metal batteries due to their superior ionic conductivity at room temperature. However, traditional PDOL electrolytes suffer from inferior thermal stability, which has hampered their practical application. In this work, a competitive coordination mechanism is proposed to strengthen vulnerable ether oxygen bonds in PDOL chains, thereby improving the thermal stability of PDOL electrolytes. The strong coordination of Lewis base ligands on Li6.75La3Zr1.75Ta0.25O12 (LLZTO) surface with Li ions weakens the ionic-dipolar interactions between PDOL chains and Li ions, conversely reinforcing the bond energy of ether oxygen bonds. Incorporating LLZTO into PDOL electrolytes effectively enhances the thermal decomposition temperature from 110 to 302 °C. Li||LiFePO4 full cell with a 12 μm ultrathin PDOL hybrid electrolyte delivers enhanced discharge capacity and extended cycling life for 100 cycles at an elevated temperature of 60 °C. This work provides critical insights into the development of thermally stable PDOL electrolytes for safe solid-state Li metal batteries.

Electronic Supplementary Material

Download File(s)
7220_ESM.pdf (1.3 MB)

References

[1]

Sun, C. W.; Liu, J.; Gong, Y. D.; Wilkinson, D. P.; Zhang, J. J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363–386.

[2]

Liao, Y. L.; Hu, J. K.; Fu, Z. H.; Zhao, C. Z.; Lu, Y.; Li, S.; Yang, S. J.; Sun, S.; Wang, X. L.; Liu, J. et al. Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries. J. Energy Chem. 2023, 80, 458–465.

[3]

Liu, J.; Yuan, H.; Liu, H.; Zhao, C. Z.; Lu, Y.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Unlocking the failure mechanism of solid state lithium metal batteries. Adv. Energy Mater. 2022, 12, 2100748.

[4]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[5]

Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S. et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86.

[6]

Liu, J.; Mei, X. W.; Peng, F. Lignin derived porous carbon with favorable mesoporous contributions for highly efficient ionic liquid-based supercapacitors. Chin. Chem. Lett. 2023, 34, 108187.

[7]

Wu, Y. J.; Wang, S.; Li, H.; Chen, L. Q.; Wu, F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat 2021, 3, 827–853.

[8]

Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267.

[9]

Yang, S. J.; Hu, J. K.; Jiang, F. N.; Cheng, X. B.; Sun, S.; Hsu, H. J.; Ren, D. S.; Zhao, C. Z.; Yuan, H.; Ouyang, M. G. et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells. eTransportation 2023, 18, 100279.

[10]

He, L. J.; Liu, J.; Lv, T. T.; Wei, A. C.; Yuan, T. Q. 1T-rich MoS2 nanosheets anchored on conductive porous carbon as effective polysulfide promoters for lithium-sulfur batteries. J. Colloid Interface Sci. 2024, 671, 175–183.

[11]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

[12]

Wu, J. Y.; Zeng, H. X.; Shi, Q. X.; Li, X. W.; Xia, Q.; Xue, Z. G.; Ye, Y. S.; Xie, X. L. Safety-reinforced plastic crystal composite polymer electrolyte by 3D MoS2-based nano-hybrid for Li-metal batteries. J. Power Sources 2018, 405, 7–17.

[13]

Li, S.; Yang, S. J.; Liu, G. X.; Hu, J. K.; Liao, Y. L.; Wang, X. L.; Wen, R.; Yuan, H.; Huang, J. Q.; Zhang, Q. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries. Adv. Mater. 2024, 36, 2307768.

[14]

Hu, J. K.; Yuan, H.; Yang, S. J.; Lu, Y.; Sun, S.; Liu, J.; Liao, Y. L.; Li, S.; Zhao, C. Z.; Huang, J. Q. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries. J. Energy Chem. 2022, 71, 612–618.

[15]

Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088.

[16]

Deng, B.; Jing, M. X.; Li, R.; Li, L. X.; Yang, H.; Liu, M. Q.; Xiang, J.; Yuan, W. Y.; Shen, X. Q. Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. J. Colloid Interface Sci. 2022, 620, 199–208.

[17]

Yao, P. H.; Yu, H. B.; Ding, Z. Y.; Liu, Y. C.; Lu, J.; Lavorgna, M.; Wu, J. W.; Liu, X. J. Review on polymer-based composite electrolytes for lithium batteries. Front. Chem. 2019, 7, 522.

[18]

S. H.; Xie, B.; Zhuang, X. C.; Wang, S. T.; Qiao, L. X.; Dong, S. M.; Ma, J.; Zhou, Q.; Zhang, H. R.; Zhang, J. J. et al. Great challenges and new paradigm of the in situ polymerization technology inside lithium batteries. Adv. Funct. Mater. 2024, 34, 2314063.

[19]

Xu, P.; Shuang, Z. Y.; Zhao, C. Z.; Li, X.; Fan, L. Z.; Chen, A. B.; Chen, H. T.; Kuzmina, E.; Karaseva, E.; Kolosnitsyn, V. et al. A review of solid-state lithium metal batteries through in-situ solidification. Sci. China Chem. 2024, 67, 67–86.

[20]

Yang, H.; Jing, M. X.; Wang, L.; Xu, H.; Yan, X. H.; He, X. M. PDOL-based solid electrolyte toward practical application: Opportunities and challenges. Nano-Micro Lett. 2024, 16, 127.

[21]

Wang, Z. L.; Wang, Y. H.; Shen, L. Y.; Jin, Z. Q.; Law, H. M.; Wang, A. B.; Wang, W. K.; Ciucci, F. Towards durable practical lithium-metal batteries: Advancing the feasibility of poly-DOL-based quasi-solid-state electrolytes via a novel nitrate-based additive. Energy Environ. Sci. 2023, 16, 4084–4092.

[22]

Liu, Q.; Cai, B. Y.; Li, S.; Yu, Q. P.; Lv, F. Z.; Kang, F. Y.; Wang, Q.; Li, B. H. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J. Mater. Chem. A 2020, 8, 7197–7204.

[23]

Liu, Y. L.; Xu, Y. L. Porous membrane host-derived in-situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chem. Eng. J. 2022, 433, 134471.

[24]

Li, L. X.; Li, R.; Huang, Z. H.; Yang, H.; Liu, M. Q.; Xiang, J.; Hussain, S.; Shen, X. Q.; Jing, M. X. A multifunctional gradient solid electrolyte remarkably improving interface compatibility and ion transport in solid-state lithium battery. ACS Appl. Mater. Interfaces 2022, 14, 30786–30795.

[25]

Yang, H.; Zhang, B.; Jing, M. X.; Shen, X. Q.; Wang, L.; Xu, H.; Yan, X. H.; He, X. M. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 2022, 12, 2201762.

[26]

Li, W.; Gao, J.; Tian, H. Y.; Li, X. L.; He, S.; Li, J. P.; Wang, W. L.; Li, L.; Li, H.; Qiu, J. S. et al. SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angew. Chem., Int. Ed. 2022, 61, e202114805.

[27]

Cui, J.; Du, Y. F.; Zhao, L.; Li, X. C.; Sun, Z. X.; Li, D.; Li, H. Thermal stable poly-dioxolane based electrolytes via a robust crosslinked network for dendrite-free solid-state Li-metal batteries. Chem. Eng. J. 2023, 461, 141973.

[28]

Luo, M. Z.; Su, Y.; Sun, Z. F.; Yu, X. Y.; He, Z. N.; Zhou, J.; Yan, R. T.; Wang, M. S.; Li, Y. X.; Yang, Y. Unveiling the thermal decomposition mechanism of high-nickel cathode with loaded nano-Al2O3 on conductive carbon for safe lithium-ion batteries. Energy Storage Mater. 2024, 67, 103256.

[29]

Roganović, A.; Vraneš, M.; Cvjetićanin, N.; Chen, X. P.; Papović, S. Effect of zwitterionic additive on electrode protection through electrochemical performances of anatase TiO2 nanotube array electrode in ionic liquid electrolyte. Int. J. Mol. Sci. 2023, 24, 3495.

[30]

Ma, Q.; Yue, J. P.; Fan, M.; Tan, S. J.; Zhang, J.; Wang, W. P.; Liu, Y.; Tian, Y. F.; Xu, Q.; Yin, Y. X. et al. Formulating the electrolyte towards high-energy and safe rechargeable lithium-metal batteries. Angew. Chem., Int. Ed. 2021, 60, 16554–16560.

[31]

Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

[32]

Kim, J. S.; Yoon, G.; Kim, S.; Sugata, S.; Yashiro, N.; Suzuki, S.; Lee, M. J.; Kim, R.; Badding, M.; Song, Z. et al. Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat. Commun. 2023, 14, 782.

[33]

Jia, M. Y.; Zhao, N.; Huo, H. Y.; Guo, X. X. Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries. Electrochem. Energy Rev. 2020, 3, 656–689.

[34]

Shen, F.; Guo, W. C.; Zeng, D. Y.; Sun, Z. T.; Gao, J.; Li, J.; Zhao, B.; He, B.; Han, X. G. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 30313–30319.

[35]

Hu, J. K.; Gao, Y. C.; Yang, S. J.; Wang, X. L.; Chen, X.; Liao, Y. L.; Li, S.; Liu, J.; Yuan, H.; Huang, J. Q. High energy density solid-state lithium metal batteries enabled by in situ polymerized integrated ultrathin solid electrolyte/cathode. Adv. Funct. Mater. 2024, 34, 2311633.

[36]

Chen, M. H.; Yue, Z. Y.; Wu, Y. X.; Wang, Y.; Li, Y.; Chen, Z. Thermal stable polymer-based solid electrolytes: Design strategies and corresponding stable mechanisms for solid-state Li metal batteries. Sustain. Mater. Technol. 2023, 36, e00587.

[37]

Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

Nano Research
Article number: 94907220
Cite this article:
Pei Y-Y, Hu J-K, Yuan H, et al. Competitive coordination enhancing the thermal stability of PDOL electrolytes for safe solid-state lithium metal batteries. Nano Research, 2025, 18(3): 94907220. https://doi.org/10.26599/NR.2025.94907220
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return