Molecular ferroelectrics, characterized by outstanding photoelectric and unique ferroelectric properties, invigorate the field of ferroelectric photovoltaics. Nonetheless, the performance of molecular ferroelectric devices is hindered by fine grains resulting from poor high-temperature stability. In this work, we successfully achieved micron-grained molecular ferroelectric films by using the space-confined vapor deposited method. The optimized film exhibited a significant increase in grain size from the nanometer level (0.08 µm) to the micrometer level (~ 2 µm), leading to improved optoelectronic and ferroelectricity. Furthermore, it optimizes the energy level and enhances the photovoltaic performance of vertical devices. Research on the mechanism shows that high annealing temperature and inhibiting component loss play an important role in obtaining large grain films. This work provides new research ideas for improving the quality of molecular ferroelectric films and provides valuable reference for the fabrication of high performance molecular ferroelectric photovoltaic devices.
Chakrabartty, J.; Harnagea, C.; Celikin, M.; Rosei, F.; Nechache, R. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases. Nat. Photonics 2018, 12, 271–276.
Liu, Y.; Wang, S. F.; Chen, Z. J.; Xiao, L. X. Applications of ferroelectrics in photovoltaic devices. Sci. China Mater. 2016, 59, 851–866.
Butler, K. T.; Frost, J. M.; Walsh, A. Ferroelectric materials for solar energy conversion: Photoferroics revisited. Energy Environ. Sci. 2015, 8, 838–848.
Niv, A.; Abrams, Z. R.; Gharghi, M.; Gladden, C.; Zhang, X. Overcoming the bandgap limitation on solar cell materials. Appl. Phys. Lett. 2012, 100, 083901.
Nakashima, S.; Uchida, T.; Takayama, K.; Fujisawa, H.; Shimizu, M. Influence of the polarization direction of light on the anomalous photovoltaic effect in BiFeO3 thin films. J. Korean Phys. Soc. 2015, 66, 1389–1393.
Liu, X. T.; Zhang, F. Q.; Long, P. Q.; Lu, T.; Zeng, H. R.; Liu, Y.; Withers, R. L.; Li, Y. X.; Yi, Z. G. Anomalous photovoltaic effect in centrosymmetric ferroelastic BiVO4. Adv. Mater. 2018, 30, 1801619.
Grinberg, I.; West, D. V.; Torres, M.; Gou, G. Y.; Stein, D. M.; Wu, L. Y.; Chen, G. N.; Gallo, E. M.; Akbashev, A. R.; Davies, P. K. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512.
Huang, H. T. Ferroelectric photovoltaics. Nat. Photonics 2010, 4, 134–135.
Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. H.; Rossell, M. D.; Yu, P.; Chu, Y. H.; Scott, J. F.; Ager III, J. W. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147.
Bhatnagar, A.; Roy Chaudhuri, A.; Kim, Y. H.; Hesse, D.; Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 2013, 4, 2835.
Tu, C. S.; Chen, C. S.; Chen, P. Y.; Wei, H. H.; Schmidt, V. H.; Lin, C. Y.; Anthoniappen, J.; Lee, J. M. Enhanced photovoltaic effects in A-site samarium doped BiFeO3 ceramics: The roles of domain structure and electronic state. J. Eur. Ceram. Soc. 2016, 36, 1149–1157.
Tan, Y. Q.; Zhang, J. L.; Wu, Y. Q.; Wang, C. L.; Koval, V.; Shi, B. G.; Ye, H. T.; McKinnon, R.; Viola, G.; Yan, H. X. Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci. Rep. 2015, 5, 9953.
Zhang, J. J.; Su, X. D.; Shen, M. R.; Dai, Z. H.; Zhang, L. J.; He, X. Y.; Cheng, W. X.; Cao, M. Y.; Zou, G. F. Enlarging photovoltaic effect: Combination of classic photoelectric and ferroelectric photovoltaic effects. Sci. Rep. 2013, 3, 2109.
Zhang, H. Y.; Hu, C. L.; Hu, Z. B.; Mao, J. G.; Song, Y.; Xiong, R. G. Narrow band gap observed in a molecular ferroelastic: Ferrocenium tetrachloroferrate. J. Am. Chem. Soc. 2020, 142, 3240–3245.
Wang, C.; Gu, J. H.; Li, J.; Cai, J. Y.; Li, L. T.; Yao, J. J.; Lu, Z.; Wang, X. H.; Zou, G. F. Two-dimensional ( n = 1) ferroelectric film solar cells. Natl. Sci. Rev. 2023, 10, nwad061.
Li, H. J.; Liu, Y. L.; Chen, X. G.; Gao, J. X.; Wang, Z. X.; Liao, W. Q. High-temperature dielectric switching and photoluminescence in a corrugated lead bromide layer hybrid perovskite semiconductor. Inorg. Chem. 2019, 58, 10357–10363.
Ye, H. Y.; Zhou, Q. H.; Niu, X. H.; Liao, W. Q.; Fu, D. W.; Zhang, Y.; You, Y. M.; Wang, J. L.; Chen, Z. N.; Xiong, R. G. High-temperature ferroelectricity and photoluminescence in a hybrid organic–inorganic compound: (3-Pyrrolinium)MnCl3. J. Am. Chem. Soc. 2015, 137, 13148–13154.
Xiao, L. B.; Xu, X. L.; Lu, Z.; Zhao, J.; Liu, R. Y.; Ye, Y. Q.; Tang, R. J.; Liao, W. Q.; Xiong, R. G.; Zou, G. F. In- situ organic–inorganic ferroelectric layer growth for efficient perovskite solar cells with high photovoltage. Nano Energy 2023, 109, 108114.
Zhang, H. J.; Shi, Z. J.; Hu, L. G.; Tang, Y. Y.; Qin, Z. Y.; Liao, W. Q.; Wang, Z. S.; Qin, J. J.; Li, X. G.; Wang, H. L. et al. Highly efficient 1D/3D ferroelectric perovskite solar cell. Adv. Funct. Mater. 2021, 31, 2100205.
Xu, X. L.; Xiao, L. B.; Zhao, J.; Pan, B. K.; Li, J.; Liao, W. Q.; Xiong, R. G.; Zou, G. F. Molecular ferroelectrics-driven high-performance perovskite solar cells. Angew. Chem., Int. Ed. 2020, 59, 19974–19982.
Gu, J. H.; Wang, C.; Xu, X. L.; Xiao, L. B.; Li, J.; Zhao, J.; Zou, G. F. Efficient molecular ferroelectric photovoltaic device with high photocurrent via lewis acid-base adduct approach. Nanotechnology 2022, 33, 405402.
Wang, J. J.; Zhou, D. Y.; Dong, W.; Yao, Y. F.; Sun, N. N.; Ali, F.; Hou, X. D.; Liu, F. Optimizing annealing process for ferroelectric y-doped HfO2 thin films by all-inorganic aqueous precursor solution. Adv. Electron. Mater. 2021, 7, 2000585.
Wang, Y. L.; Damjanovic, D.; Klein, N.; Hollenstein, E.; Setter, N. Compositional Inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. J. Am. Ceram. Soc. 2007, 90, 3485–3489.
Zhang, H. Y.; Song, X. J.; Chen, X. G.; Zhang, Z. X.; You, Y. M.; Tang, Y. Y.; Xiong, R. G. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 2020, 142, 4925–4931.
Rajendra Kumar, G.; Kim, H. J.; Karupannan, S.; Prabakar, K. Interplay between iodide and tin vacancies in CsSnI3 perovskite solar cells. J. Phys. Chem. C 2017, 121, 16447–16453.
Quarti, C.; De Angelis, F.; Beljonne, D. Influence of surface termination on the energy level alignment at the CH3NH3PbI3 perovskite/C60 interface. Chem. Mater. 2017, 29, 958–968.
Mirzehmet, A.; Ohtsuka, T.; Abd. Rahman, S. A.; Yuyama, T.; Krüger, P.; Yoshida, H. Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv. Mater. 2021, 33, 2004981.
Wang, C.; Li, L. T.; Xiao, L. B.; Lu, Z.; Wang, R. N.; Xu, Y.; Tang, R. J.; Zhang, Q.; Li, L. Z.; Bai, Z. C. et al. Impact of AlO X dielectric layer on performance in two-dimensional perovskite photovoltaic devices. ACS Appl. Energy Mater. 2023, 6, 1208–1217.