PDF (15.9 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

Space-confined vapor deposited molecular ferroelectric film for photovoltaic devices

Chen Wang1,2Shan Cong2 ()Lingbo Xiao3Chao-ran Huang2Ruonan Wang2Ruijie Li2Lutao Li2Guifu Zou4 ()Qiang Zhang1 ()
College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China
Show Author Information

Graphical Abstract

View original image Download original image
Space-confined vapor deposition enables annealing above decomposition temperature to optimize molecular ferroelectric films and enhance photovoltaic performance.

Abstract

Molecular ferroelectrics, characterized by outstanding photoelectric and unique ferroelectric properties, invigorate the field of ferroelectric photovoltaics. Nonetheless, the performance of molecular ferroelectric devices is hindered by fine grains resulting from poor high-temperature stability. In this work, we successfully achieved micron-grained molecular ferroelectric films by using the space-confined vapor deposited method. The optimized film exhibited a significant increase in grain size from the nanometer level (0.08 µm) to the micrometer level (~ 2 µm), leading to improved optoelectronic and ferroelectricity. Furthermore, it optimizes the energy level and enhances the photovoltaic performance of vertical devices. Research on the mechanism shows that high annealing temperature and inhibiting component loss play an important role in obtaining large grain films. This work provides new research ideas for improving the quality of molecular ferroelectric films and provides valuable reference for the fabrication of high performance molecular ferroelectric photovoltaic devices.

Electronic Supplementary Material

Video
7221_ESM1.mp4
Download File(s)
7221_ESM.pdf (2.6 MB)

References

[1]

Chakrabartty, J.; Harnagea, C.; Celikin, M.; Rosei, F.; Nechache, R. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases. Nat. Photonics 2018, 12, 271–276.

[2]

Liu, Y.; Wang, S. F.; Chen, Z. J.; Xiao, L. X. Applications of ferroelectrics in photovoltaic devices. Sci. China Mater. 2016, 59, 851–866.

[3]

Butler, K. T.; Frost, J. M.; Walsh, A. Ferroelectric materials for solar energy conversion: Photoferroics revisited. Energy Environ. Sci. 2015, 8, 838–848.

[4]

Niv, A.; Abrams, Z. R.; Gharghi, M.; Gladden, C.; Zhang, X. Overcoming the bandgap limitation on solar cell materials. Appl. Phys. Lett. 2012, 100, 083901.

[5]

Nakashima, S.; Uchida, T.; Takayama, K.; Fujisawa, H.; Shimizu, M. Influence of the polarization direction of light on the anomalous photovoltaic effect in BiFeO3 thin films. J. Korean Phys. Soc. 2015, 66, 1389–1393.

[6]

Liu, X. T.; Zhang, F. Q.; Long, P. Q.; Lu, T.; Zeng, H. R.; Liu, Y.; Withers, R. L.; Li, Y. X.; Yi, Z. G. Anomalous photovoltaic effect in centrosymmetric ferroelastic BiVO4. Adv. Mater. 2018, 30, 1801619.

[7]

Grinberg, I.; West, D. V.; Torres, M.; Gou, G. Y.; Stein, D. M.; Wu, L. Y.; Chen, G. N.; Gallo, E. M.; Akbashev, A. R.; Davies, P. K. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512.

[8]

Huang, H. T. Ferroelectric photovoltaics. Nat. Photonics 2010, 4, 134–135.

[9]

Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. H.; Rossell, M. D.; Yu, P.; Chu, Y. H.; Scott, J. F.; Ager III, J. W. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147.

[10]

Bhatnagar, A.; Roy Chaudhuri, A.; Kim, Y. H.; Hesse, D.; Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 2013, 4, 2835.

[11]

Tu, C. S.; Chen, C. S.; Chen, P. Y.; Wei, H. H.; Schmidt, V. H.; Lin, C. Y.; Anthoniappen, J.; Lee, J. M. Enhanced photovoltaic effects in A-site samarium doped BiFeO3 ceramics: The roles of domain structure and electronic state. J. Eur. Ceram. Soc. 2016, 36, 1149–1157.

[12]

Tan, Y. Q.; Zhang, J. L.; Wu, Y. Q.; Wang, C. L.; Koval, V.; Shi, B. G.; Ye, H. T.; McKinnon, R.; Viola, G.; Yan, H. X. Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci. Rep. 2015, 5, 9953.

[13]

Zhang, J. J.; Su, X. D.; Shen, M. R.; Dai, Z. H.; Zhang, L. J.; He, X. Y.; Cheng, W. X.; Cao, M. Y.; Zou, G. F. Enlarging photovoltaic effect: Combination of classic photoelectric and ferroelectric photovoltaic effects. Sci. Rep. 2013, 3, 2109.

[14]

Zhang, H. Y.; Hu, C. L.; Hu, Z. B.; Mao, J. G.; Song, Y.; Xiong, R. G. Narrow band gap observed in a molecular ferroelastic: Ferrocenium tetrachloroferrate. J. Am. Chem. Soc. 2020, 142, 3240–3245.

[15]

Wang, C.; Gu, J. H.; Li, J.; Cai, J. Y.; Li, L. T.; Yao, J. J.; Lu, Z.; Wang, X. H.; Zou, G. F. Two-dimensional ( n = 1) ferroelectric film solar cells. Natl. Sci. Rev. 2023, 10, nwad061.

[16]

Li, H. J.; Liu, Y. L.; Chen, X. G.; Gao, J. X.; Wang, Z. X.; Liao, W. Q. High-temperature dielectric switching and photoluminescence in a corrugated lead bromide layer hybrid perovskite semiconductor. Inorg. Chem. 2019, 58, 10357–10363.

[17]

Ye, H. Y.; Zhou, Q. H.; Niu, X. H.; Liao, W. Q.; Fu, D. W.; Zhang, Y.; You, Y. M.; Wang, J. L.; Chen, Z. N.; Xiong, R. G. High-temperature ferroelectricity and photoluminescence in a hybrid organic–inorganic compound: (3-Pyrrolinium)MnCl3. J. Am. Chem. Soc. 2015, 137, 13148–13154.

[18]

Xiao, L. B.; Xu, X. L.; Lu, Z.; Zhao, J.; Liu, R. Y.; Ye, Y. Q.; Tang, R. J.; Liao, W. Q.; Xiong, R. G.; Zou, G. F. In- situ organic–inorganic ferroelectric layer growth for efficient perovskite solar cells with high photovoltage. Nano Energy 2023, 109, 108114.

[19]

Zhang, H. J.; Shi, Z. J.; Hu, L. G.; Tang, Y. Y.; Qin, Z. Y.; Liao, W. Q.; Wang, Z. S.; Qin, J. J.; Li, X. G.; Wang, H. L. et al. Highly efficient 1D/3D ferroelectric perovskite solar cell. Adv. Funct. Mater. 2021, 31, 2100205.

[20]

Xu, X. L.; Xiao, L. B.; Zhao, J.; Pan, B. K.; Li, J.; Liao, W. Q.; Xiong, R. G.; Zou, G. F. Molecular ferroelectrics-driven high-performance perovskite solar cells. Angew. Chem., Int. Ed. 2020, 59, 19974–19982.

[21]

Gu, J. H.; Wang, C.; Xu, X. L.; Xiao, L. B.; Li, J.; Zhao, J.; Zou, G. F. Efficient molecular ferroelectric photovoltaic device with high photocurrent via lewis acid-base adduct approach. Nanotechnology 2022, 33, 405402.

[22]

Wang, J. J.; Zhou, D. Y.; Dong, W.; Yao, Y. F.; Sun, N. N.; Ali, F.; Hou, X. D.; Liu, F. Optimizing annealing process for ferroelectric y-doped HfO2 thin films by all-inorganic aqueous precursor solution. Adv. Electron. Mater. 2021, 7, 2000585.

[23]

Wang, Y. L.; Damjanovic, D.; Klein, N.; Hollenstein, E.; Setter, N. Compositional Inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. J. Am. Ceram. Soc. 2007, 90, 3485–3489.

[24]

Zhang, H. Y.; Song, X. J.; Chen, X. G.; Zhang, Z. X.; You, Y. M.; Tang, Y. Y.; Xiong, R. G. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 2020, 142, 4925–4931.

[25]

Rajendra Kumar, G.; Kim, H. J.; Karupannan, S.; Prabakar, K. Interplay between iodide and tin vacancies in CsSnI3 perovskite solar cells. J. Phys. Chem. C 2017, 121, 16447–16453.

[26]

Quarti, C.; De Angelis, F.; Beljonne, D. Influence of surface termination on the energy level alignment at the CH3NH3PbI3 perovskite/C60 interface. Chem. Mater. 2017, 29, 958–968.

[27]

Mirzehmet, A.; Ohtsuka, T.; Abd. Rahman, S. A.; Yuyama, T.; Krüger, P.; Yoshida, H. Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv. Mater. 2021, 33, 2004981.

[28]

Wang, C.; Li, L. T.; Xiao, L. B.; Lu, Z.; Wang, R. N.; Xu, Y.; Tang, R. J.; Zhang, Q.; Li, L. Z.; Bai, Z. C. et al. Impact of AlO X dielectric layer on performance in two-dimensional perovskite photovoltaic devices. ACS Appl. Energy Mater. 2023, 6, 1208–1217.

Nano Research
Article number: 94907221
Cite this article:
Wang C, Cong S, Xiao L, et al. Space-confined vapor deposited molecular ferroelectric film for photovoltaic devices. Nano Research, 2025, 18(3): 94907221. https://doi.org/10.26599/NR.2025.94907221
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return