AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis of structurally chiral nickel oxide nanostructures for enhanced spin-dependent oxygen electrocatalysis

Yiran Jin§Yang Cheng§Shenghe DongChengyu XiaoZhi ChenPeng-peng Wang ( )
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

§ Yiran Jin and Yang Cheng contributed equally to this work.

Show Author Information

Graphical Abstract

Chiral nickel oxide nanostructures were synthesized using a facile wet chemistry method. These chiral nanostructures enabled the modulation of catalytic reaction kinetics and enhanced the performance for water oxidation through spin control.

Abstract

Chiral inorganic materials with unique asymmetries hold promising potential in several fields, including catalytic processes. However, imparting structural chirality to inorganic materials presents substantial challenges that hinders their exploration in many application. In this study, we report a simple two-step method for synthesizing structurally chiral nickel oxides (NiO) nanostructures and demonstrate that the chiral-induced spin-selective mechanism enhances the catalytic performance during electrocatalytic oxygen evolution reaction (OER). Compared to their achiral NiO counterparts, the chiral NiO nanostructures not only improve the reaction kinetics (a 60 mV reduction in overpotential), but also effectively modulate the reaction pathway to inhibit the byproduct hydrogen peroxide generation. Under neutral conditions, this modulation results in a 4.5-fold reduction in hydrogen peroxide production. This work enriches the variety of chiral inorganic nanomaterials and paves the way for the development and application of chiral inorganic nanomaterials in spin-dependent processes.

Electronic Supplementary Material

Download File(s)
7222_ESM.pdf (1 MB)

References

[1]

Semnani, B.; Flannery, J.; Al Maruf, R.; Bajcsy, M. Spin-preserving chiral photonic crystal mirror. Light Sci. Appl. 2020, 9, 23.

[2]

Ni, B.; Cölfen, H. Chirality communications between inorganic and organic compounds. SmartMat 2021, 2, 17–32.

[3]

Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem., Int. Ed. 2015, 54, 3872–3890.

[4]

Mas-Roselló, J.; Herraiz, A. G.; Audic, B.; Laverny, A.; Cramer, N. Chiral cyclopentadienyl ligands: Design, syntheses, and applications in asymmetric catalysis. Angew. Chem., Int. Ed. 2021, 60, 13198–13224.

[5]

Ranganath, K. V. S.; Kloesges, J.; Schäfer, A. H.; Glorius, F. Asymmetric nanocatalysis: N-heterocyclic carbenes as chiral modifiers of Fe3O4/Pd nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 7786–7789.

[6]

Cheng, Q. S.; Ma, Q.; Pei, H. B.; He, S. M.; Wang, R.; Guo, R. B.; Liu, N. J.; Mo, Z. L. Enantioseparation membranes: Research status, challenges, and trends. Small 2023, 19, 2300376.

[7]

Wang, F. M. J.; Pizzi, D.; Lu, Y. Z. H.; He, K. Q.; Thurecht, K. J.; Hill, M. R.; Marriott, P. J.; Banaszak Holl, M. M.; Kempe, K.; Wang, H. T. A homochiral poly(2-oxazoline)-based membrane for efficient enantioselective separation. Angew. Chem., Int. Ed. 2023, 62, e202212139.

[8]

Yang, X.; Huang, S. S.; Chikkaraddy, R.; Goerlitzer, E. S. A.; Chen, F. L.; Du, J. L.; Vogel, N.; Weiss, T.; Baumberg, J. J.; Hou, Y. D. Chiral plasmonic shells: High-performance metamaterials for sensitive chiral biomolecule detection. ACS Appl. Mater. Interfaces 2022, 14, 53183–53192.

[9]

Yuan, A. M.; Hao, C. L.; Wu, X. L.; Sun, M. Z.; Qu, A. H.; Xu, L. G.; Kuang, H.; Xu, C. L. Chiral Cu x OS@ZIF-8 nanostructures for ultrasensitive quantification of hydrogen sulfide in vivo. Adv. Mater. 2020, 32, 1906580.

[10]

Ouyang, Y. C.; Yeom, B. J.; Zhao, Y.; Ma, W. Progress and prospects of chiral nanomaterials for biosensing platforms. Rare Met. 2024, 43, 2469–2497.

[11]

Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816.

[12]

Ray, S. G.; Daube, S. S.; Leitus, G.; Vager, Z.; Naaman, R. Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys. Rev. Lett. 2006, 96, 036101.

[13]

Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.

[14]

Bloom, B. P.; Paltiel, Y.; Naaman, R.; Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 2024, 124, 1950–1991.

[15]

Qian, Q.; Ren, H. Y.; Zhou, J. Y.; Wan, Z.; Zhou, J. X.; Yan, X. X.; Cai, J.; Wang, P. Q.; Li, B. L.; Sofer, Z. et al. Chiral molecular intercalation superlattices. Nature 2022, 606, 902–908.

[16]

Nakajima, R.; Hirobe, D.; Kawaguchi, G.; Nabei, Y.; Sato, T.; Narushima, T.; Okamoto, H.; Yamamoto, H. M. Giant spin polarization and a pair of antiparallel spins in a chiral superconductor. Nature 2023, 613, 479–484.

[17]

Wolf, Y.; Liu, Y. Z.; Xiao, J. W.; Park, N.; Yan, B. H. Unusual spin polarization in the chirality-induced spin selectivity. ACS Nano 2022, 16, 18601–18607.

[18]

Ma, S.; Lee, H.; Moon, J. Chirality-induced spin selectivity enables new breakthrough in electrochemical and photoelectrochemical reactions. Adv. Mater. 2024, 36, 2405685.

[19]

Zhang, W. Y.; Banerjee-Ghosh, K.; Tassinari, F.; Naaman, R. Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nanoparticles. ACS Energy Lett. 2018, 3, 2308–2313.

[20]

Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral Mesostructured NiO Films with Spin Polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

[21]

Liang, Y. C.; Banjac, K.; Martin, K.; Zigon, N.; Lee, S.; Vanthuyne, N.; Garcés-Pineda, F. A.; Galán-Mascarós, J. R.; Hu, X. L.; Avarvari, N. et al. Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes. Nat. Commun. 2022, 13, 3356.

[22]

Ghosh, K. B.; Zhang, W. Y.; Tassinari, F.; Mastai, Y.; Lidor-Shalev, O.; Naaman, R.; Möllers, P.; Nürenberg, D.; Zacharias, H.; Wei, J. et al. Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J. Phys. Chem. C 2019, 123, 3024–3031.

[23]

Ghosh, S.; Bloom, B. P.; Lu, Y. L.; Lamont, D.; Waldeck, D. H. Increasing the efficiency of water splitting through spin polarization using cobalt oxide thin film catalysts. J. Phys. Chem. C 2020, 124, 22610–22618.

[24]

Bai, T.; Ai, J.; Ma, J.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Resistance-chiral anisotropy of chiral mesostructured half-metallic Fe3O4 films. Angew. Chem., Int. Ed. 2021, 60, 20036–20041.

[25]

Vadakkayil, A.; Clever, C.; Kunzler, K. N.; Tan, S. S.; Bloom, B. P.; Waldeck, D. H. Chiral electrocatalysts eclipse water splitting metrics through spin control. Nat. Commun. 2023, 14, 1067.

[26]

Jin, Y. R.; Fu, W. L.; Wen, Z. H.; Tan, L. L.; Chen, Z.; Wu, H.; Wang, P. P. Chirality engineering of colloidal copper oxide nanostructures for tailored spin-polarized catalysis. J. Am. Chem. Soc. 2024, 146, 2798–2804.

[27]
Wang, X.; Yang, Q.; Singh, S.; Borrmann, H.; Hasse, V.; Yi, C. J.; Li, Y. K.; Schmidt, M.; Li, X. D.; Fecher, G. H.; Zhou, D.; Yan, B. H.; Felser, C. Topological semimetals with intrinsic chirality as spin-controlling electrocatalysts for the oxygen evolution reaction. Nat Energy, in press, DOI: 10.1038/s41560-024-01674-9.
[28]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[29]

Zhou, S. M.; Miao, X. B.; Zhao, X.; Ma, C.; Qiu, Y. H.; Hu, Z. P.; Zhao, J. Y.; Shi, L.; Zeng, J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 2016, 7, 11510.

[30]

Ren, X.; Wu, T. Z.; Sun, Y. M.; Li, Y.; Xian, G. Y.; Liu, X. H.; Shen, C. M.; Gracia, J.; Gao, H. J.; Yang, H. T. et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608.

[31]

Gracia, J. Itinerant spins and bond lengths in oxide electrocatalysts for oxygen evolution and reduction reactions. J. Phys. Chem. C 2019, 123, 9967–9972.

[32]

Hao, Y. Y.; Qiao, C.; Zhang, S. P.; Zhu, Y. B.; Ji, L.; Cao, C. B.; Zhang, J. T. Constructing cation vacancy defects on NiFe–LDH nanosheets for efficient oxygen evolution reaction. Energy Mater. Adv. 2023, 4, 0040.

[33]

Wan, X.; Song, Y. J.; Zhou, H.; Shao, M. F. Layered double hydroxides for oxygen evolution reaction towards efficient hydrogen generation. Energy Mater. Adv. 2022, 2022, 9842610.

[34]

Jiang, Z. Q.; Fan, C. Z.; Pan, J. Y.; Shao, L.; Chen, H.; Pervaiz, E.; Dong, Y.; Wang, T. Z.; Zheng, X. R.; Li, J. H. et al. Recent advances in Ir/Ru-based perovskite electrocatalysts for oxygen evolution reaction. Rare Met. 2024, 43, 2891–2912.

[35]

Chrétien, S.; Metiu, H. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: The importance of spin conservation. J. Chem. Phys. 2008, 129, 074705.

[36]

Torun, E.; Fang, C. M.; De Wijs, G. A.; De Groot, R. A. Role of magnetism in catalysis: RuO2 (110) surface. J. Phys. Chem. C. 2013, 117, 6353–6357.

[37]

Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364–4376.

[38]

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

[39]

Li, Z.; Kong, C.; Lu, G. X. Visible photocatalytic water splitting and photocatalytic two-electron oxygen formation over Cu- and Fe-doped g-C3N4. J. Phys. Chem. C 2016, 120, 56–63.

[40]

Bian, Z. Y.; Kato, K.; Ogoshi, T.; Cui, Z.; Sa, B.; Tsutsui, Y.; Seki, S.; Suda, M. Hybrid chiral MoS2 layers for spin-polarized charge transport and spin-dependent electrocatalytic applications. Adv. Sci. 2022, 9, 2201063.

Nano Research
Article number: 94907222
Cite this article:
Jin Y, Cheng Y, Dong S, et al. Synthesis of structurally chiral nickel oxide nanostructures for enhanced spin-dependent oxygen electrocatalysis. Nano Research, 2025, 18(3): 94907222. https://doi.org/10.26599/NR.2025.94907222

261

Views

90

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 November 2024
Revised: 20 December 2024
Accepted: 25 December 2024
Published: 10 February 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return