Monolithic three-dimensional (M3D) integration represents a transformative approach in semiconductor technology, enabling the vertical integration of diverse functionalities within a single chip. This review explores the evolution of M3D integration from traditional bulk semiconductors to low-dimensional materials like two-dimensioanl (2D) transition metal dichalcogenides (TMDCs) and carbon nanotubes (CNTs). Key applications include logic circuits, static random access memory (SRAM), resistive random access memory (RRAM), sensors, optoelectronics, and artificial intelligence (AI) processing. M3D integration enhances device performance by reducing footprint, improving power efficiency, and alleviating the von Neumann bottleneck. The integration of 2D materials in M3D structures demonstrates significant advancements in terms of scalability, energy efficiency, and functional diversity. Challenges in manufacturing and scaling are discussed, along with prospects for future research directions. Overall, the M3D integration with low-dimensional materials presents a promising pathway for the development of next-generation electronic devices and systems.
Hisamoto, D.; Lee, W. C.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; King, T. J.; Bokor, J.; Hu, C. M. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 2000, 47, 2320–2325.
Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.
Gandhi, R.; Chen, Z. X.; Singh, N.; Banerjee, K.; Lee, S. CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤ 50-mV/decade subthreshold swing. IEEE Electron Device Lett. 2011, 32, 1504–1506.
Chu, C. L.; Hsu, S. H.; Chang, W. Y.; Luo, G. L.; Chen, S. H. Stacked SiGe nanosheets p-FET for Sub-3 nm logic applications. Sci. Rep. 2023, 13, 9433.
Cherik, I. C.; Mohammadi, S.; Maity, S. K. Vertical tunneling FET with Ge/Si doping-less heterojunction, a high-performance switch for digital applications. Sci. Rep. 2023, 13, 16757.
Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191.
Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.
Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998, 395, 878–881.
Khlobystov, A. N. Carbon nanotubes: From nano test tube to nano-reactor. ACS Nano 2011, 5, 9306–9312.
Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.
Wang, H. M.; Wang, H. S.; Ma, C. X.; Chen, L. X.; Jiang, C. X.; Chen, C.; Xie, X. M.; Li, A. P.; Wang, X. R. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 2021, 3, 791–802.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Tong, X.; Ashalley, E.; Lin, F.; Li, H. D.; Wang, Z. M. Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 2015, 7, 203–218.
Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388–6409.
Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. J. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.
Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.
Yu, W. J.; Li, Z.; Zhou, H. L.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246–252.
Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.
Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.
Islam, A. E. Variability and reliability of single-walled carbon nanotube field effect transistors. Electronics 2013, 2, 332–367.
Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72.
Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.
Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.
Xiao, X. Y.; Chen, M.; Zhang, J.; Zhang, T. F.; Zhang, L. H.; Jin, Y. H.; Wang, J. P.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Sub-10 nm monolayer MoS2 transistors using single-walled carbon nanotubes as an evaporating mask. ACS Appl. Mater. Interfaces 2019, 11, 11612–11617.
Liu, L. T.; Kong, L. G.; Li, Q. Y.; He, C. L.; Ren, L. W.; Tao, Q. Y.; Yang, X. D.; Lin, J.; Zhao, B.; Li, Z. W. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 2021, 4, 342–347.
Li, W. S.; Gong, X. S.; Yu, Z. H.; Ma, L.; Sun, W. J.; Gao, S.; Köroğlu, Ç.; Wang, W. F.; Liu, L.; Li, T. T. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023, 613, 274–279.
Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.
Yuan, S. G.; Yang, Z. B.; Xie, C.; Yan, F.; Dai, J. Y.; Lau, S. P.; Chan, H. L. W.; Hao, J. H. Ferroelectric-driven performance enhancement of graphene field-effect transistors based on vertical tunneling heterostructures. Adv. Mater. 2016, 28, 10048–10054.
Hitesh, S.; Dasika, P.; Watanabe, K.; Taniguchi, T.; Majumdar, K. Integration of 3-level MoS2 multibridge channel FET with 2D layered contact and gate dielectric. IEEE Electron Device Lett. 2022, 43, 1993–1996.
Nazir, G.; Kim, H.; Kim, J.; Kim, K. S.; Shin, D. H.; Khan, M. F.; Lee, D. S.; Hwang, J. Y.; Hwang, C.; Suh, J. et al. Ultimate limit in size and performance of WSe2 vertical diodes. Nat. Commun. 2018, 9, 5371.
Liu, Y.; Guo, J.; Zhu, E. B.; Wang, P. Q.; Gambin, V.; Huang, Y.; Duan, X. F. Maximizing the current output in self-aligned graphene-InAs-metal vertical transistors. ACS Nano 2019, 13, 847–854.
Jiang, J. B.; Doan, M. H.; Sun, L. F.; Kim, H.; Yu, H.; Joo, M. K.; Park, S. H.; Yang, H. E. J.; Duong, D. L.; Lee, Y. H. Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 2020, 7, 1902964.
Zou, X.; Liu, L.; Xu, J. P.; Wang, H. J.; Tang, W. M. Few-layered MoS2 field-effect transistors with a vertical channel of Sub-10 nm. ACS Appl. Mater. Interfaces 2020, 12, 32943–32950.
Liu, L. T.; Liu, Y.; Duan, X. F. Graphene-based vertical thin film transistors. Sci. China Inf. Sci. 2020, 63, 201401.
Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G. Y.; Sun, Y. B.; Yang, Y.; Ren, T. L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264.
Eckel, C.; Weitz, R. T. Bioelectronics goes vertical. Nat. Mater. 2023, 22, 1165–1166.
Song, X. H.; Liu, Z.; Ma, Z. N.; Hu, Y. J.; Lv, X. J.; Li, X. P.; Yan, Y.; Jiang, Y. R.; Xia, C. X. PVA-assisted metal transfer for vertical WSe2 photodiode with asymmetric van der Waals contacts. Nanophotonics 2023, 12, 3671–3682.
Zhou, Y. Q.; Tong, L.; Chen, Z. F.; Tao, L.; Li, H.; Pang, Y.; Xu, J. B. Vertical nonvolatile Schottky-barrier-field-effect transistor with self-gating semimetal contact. Adv. Funct. Mater. 2023, 33, 2213254.
Ma, L. K.; Tao, Q. Y.; Chen, Y.; Lu, Z. Y.; Liu, L. T.; Li, Z. W.; Lu, D. L.; Wang, Y. L.; Liao, L.; Liu, Y. Realizing on/off ratios over 104 for Sub-2 nm vertical transistors. Nano Lett. 2023, 23, 8303–8309.
Liu, Y.; Zhou, H. L.; Cheng, R.; Yu, W.; Huang, Y.; Duan, X. F. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 2014, 14, 1413–1418.
Jiang, J. K.; Parto, K.; Cao, W.; Banerjee, K. Ultimate monolithic-3D integration with 2D materials: Rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 2019, 7, 878–887.
Cao, W.; Bu, H. M.; Vinet, M.; Cao, M.; Takagi, S.; Hwang, S.; Ghani, T.; Banerjee, K. The future transistors. Nature 2023, 620, 501–515.
Knickerbocker, J. U.; Andry, P. S.; Dang, B.; Horton, R. R.; Interrante, M. J.; Patel, C. S.; Polastre, R. J.; Sakuma, K.; Sirdeshmukh, R.; Sprogis, E. J. et al. Three-dimensional silicon integration. IBM J. Res. Dev. 2008, 52, 553–569.
Sinha, S.; Xu, X. Q.; Bhargava, M.; Das, S.; Cline, B.; Yeric, G. Stack up your chips: Betting on 3D integration to augment Moore's Law scaling. In Proceedings of 2019 IEEE S3S Conference, San Jose, USA, 2019.
Xu, C.; Li, H.; Suaya, R.; Banerjee, K. Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs. IEEE Trans. Electron Devices 2010, 57, 3405–3417.
Akgun, I.; Stow, D.; Xie, Y. Network-on-chip design guidelines for monolithic 3-D integration. IEEE Micro 2019, 39, 46–53.
Vinet, M.; Batude, P.; Tabone, C.; Previtali, B.; LeRoyer, C.; Pouydebasque, A.; Clavelier, L.; Valentian, A.; Thomas, O.; Michaud, S. et al. 3D monolithic integration: Technological challenges and electrical results. Microelectron. Eng. 2011, 88, 331–335.
Batude, P.; Vinet, M.; Pouydebasque, A.; Clavelier, L.; LeRoyer, C.; Tabone, C.; Previtali, B.; Sanchez, L.; Baud, L.; Roman, A. et al. Enabling 3D monolithic integration. ECS Trans. 2008, 16, 47.
Ostling, M.; Hellstrom, P. E. ( Invited) Sequential 3D integration of Ge transistors on Si CMOS. ECS Trans. 2023, 112, 13–24.
Lin, Y. W.; Lin, S. W.; Chen, B. A.; Sun, C. J.; Yan, S. C.; Luo, G. L.; Wu, Y. C.; Hou, F. J. 3-D self-aligned stacked Ge nanowire pGAAFET on Si nFinFET of single gate CFET. IEEE J. Electron Devices Soc. 2023, 11, 480–484.
Jung, S. G.; Jang, D.; Min, S. J.; Park, E.; Yu, H. Y. Performance analysis on complementary FET (CFET) relative to standard CMOS with nanosheet FET. IEEE J. Electron Devices Soc. 2022, 10, 78–82.
Chang, K.; Das, S.; Sinha, S.; Cline, B.; Yeric, G.; Lim, S. K. System-level power delivery network analysis and optimization for monolithic 3-D ICs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 888–898.
Abedin, A.; Zurauskaite, L.; Asadollahi, A.; Garidis, K.; Jayakumar, G.; Malm, B. G.; Hellstrom, P. E.; Ostling, M. Germanium on insulator fabrication for monolithic 3-D integration. IEEE J. Electron Devices Soc. 2018, 6, 588–593.
Lee, Y. J.; Chang, S. W.; Lee, W. H.; Wang, Y. H. ( Invited, digital presentation) heterogeneous IGZO/Si CFET monolithic 3D integration. ECS Trans. 2022, 109, 145.
Yan, S. Z.; Cong, Z. R.; Lu, N. D.; Yue, J. S.; Luo, Q. Recent progress in InGaZnO FETs for high-density 2T0C DRAM applications. Sci. China Inf. Sci. 2023, 66, 200404.
Gupta, C.; Pasayat, S. S. Vertical GaN and vertical Ga2O3 power transistors: Status and challenges. Phys. Status Solidi (A) 2022, 219, 2100659.
Hu, Z. Y.; Nomoto, K.; Li, W. S.; Tanen, N.; Sasaki, K.; Kuramata, A.; Nakamura, T.; Jena, D.; Xing, H. G. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett. 2018, 39, 869–872.
Choi, Y. J.; Kim, S.; Woo, H. J.; Song, Y. J.; Lee, Y.; Kang, M. S.; Cho, J. H. Remote gating of Schottky barrier for transistors and their vertical integration. ACS Nano 2019, 13, 7877–7885.
Aly, M. M. S.; Gao, M. Y.; Hills, G.; Lee, C. S.; Pitner, G.; Shulaker, M. M.; Wu, T. F.; Asheghi, M.; Bokor, J.; Franchetti, F. et al. Energy-efficient abundant-data computing: The N3XT 1,000x. Computer 2015, 48, 24–33.
Zhao, C. S.; Tan, C. L.; Lien, D. H.; Song, X. H.; Amani, M.; Hettick, M.; Nyein, H. Y. Y.; Yuan, Z.; Li, L.; Scott, M. C. et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 2020, 15, 53–58.
Zhao, Y. D.; Li, Q. Q.; Xiao, X. Y.; Li, G. H.; Jin, Y. H.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Three-dimensional flexible complementary metal-oxide-semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano 2016, 10, 2193–2202.
Xie, Y. N.; Zhang, Z. Y.; Zhong, D. L.; Peng, L. M. Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Res. 2019, 12, 1810–1816.
Fan, C. W.; Cheng, X. H.; Xu, L.; Zhu, M. G.; Ding, S. J.; Jin, C. H.; Xie, Y. N.; Peng, L. M.; Zhang, Z. Y. Monolithic three-dimensional integration of aligned carbon nanotube transistors for high-performance integrated circuits. InfoMat 2023, 5, e12420.
Fan, C. W.; Cheng, X. H.; Xie, Y. N.; Liu, F. F.; Deng, X. S.; Zhu, M. G.; Gao, Y. F.; Xiao, M. M.; Zhang, Z. Y. Monolithic three-dimensional integration of carbon nanotube circuits and sensors for smart sensing chips. ACS Nano 2023, 17, 10987–10995.
Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.
Sachid, A. B.; Tosun, M.; Desai, S. B.; Hsu, C. Y.; Lien, D. H.; Madhvapathy, S. R.; Chen, Y. Z.; Hettick, M.; Kang, J. S.; Zeng, Y. P. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 2016, 28, 2547–2554.
Sachid, A. B.; Desai, S. B.; Javey, A.; Hu, C. M. High-gain monolithic 3D CMOS inverter using layered semiconductors. Appl. Phys. Lett. 2017, 111, 222101.
Hu, V. P. H.; Su, C. W.; Lee, Y. W.; Ho, T. Y.; Cheng, C. C.; Chen, T. C.; Hung, T. Y. T.; Li, J. F.; Chen, Y. G.; Li, L. J. Energy-efficient monolithic 3-D SRAM cell with BEOL MoS2 FETs for SoC scaling. IEEE Trans. Electron Devices 2020, 67, 4216–4221.
Tang, J.; Wang, Q. Q.; Wei, Z.; Shen, C.; Lu, X. B.; Wang, S. P.; Zhao, Y. C.; Liu, J. Y.; Li, N.; Chu, Y. B. et al. Vertical integration of 2D building blocks for All-2D electronics. Adv. Electron. Mater. 2020, 6, 2000550.
Liang, L.; Hu, R. J.; Yu, L. W. Toward monolithic growth integration of nanowire electronics in 3D architecture: A review. Sci. China Inf. Sci. 2023, 66, 200406.
Xia, Y.; Zong, L. Y.; Pan, Y.; Chen, X. Y.; Zhou, L. H.; Song, Y. W.; Tong, L.; Guo, X. J.; Ma, J. Y.; Gou, S. F. et al. Wafer-scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 2022, 18, 2107650.
Liu, M. J.; Lan, W. J.; Huang, C. S.; Chen, C. Z.; Cyu, R. H.; Sino, P. A. L.; Yang, Y. L.; Chiu, P. W.; Chuang, F. C.; Shen, C. H. et al. High-performance monolithic 3D integrated complementary inverters based on monolayer n-MoS2 and p-WSe2. Small 2024, 20, 2307728.
Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.
Jia, X. H.; Cheng, Z. X.; Han, B.; Cheng, X.; Wang, Q.; Ran, Y. Q.; Xu, W. J.; Li, Y. P.; Gao, P.; Dai, L. High-performance CMOS inverter array with monolithic 3D architecture based on CVD-Grown n-MoS2 and p-MoTe2. Small 2023, 19, 2207927.
Sivan, M.; Li, Y. D.; Veluri, H.; Zhao, Y. S.; Tang, B. S.; Wang, X. H.; Zamburg, E.; Leong, J. F.; Niu, J. X.; Chand, U. et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 2019, 10, 5201.
Liu, M. G.; Niu, J. B.; Yang, G. H.; Chen, K. F.; Lu, W. D.; Liao, F. X.; Lu, C. Y.; Lu, N. D.; Li, L. Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 2023, 9, 2200722.
Xiao, Z. J.; Liu, L. T.; Chen, Y.; Lu, Z. Y.; Yang, X. K.; Gong, Z. Q.; Li, W. Y.; Kong, L. G.; Ding, S. M.; Li, Z. W. et al. High-density vertical transistors with pitch size down to 20 nm. Adv. Sci. 2023, 10, 2302760.
Kang, J. H.; Shin, H.; Kim, K. S.; Song, M. K.; Lee, D.; Meng, Y.; Choi, C.; Suh, J. M.; Kim, B. J.; Kim, H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 2023, 22, 1470–1477.
Jayachandran, D.; Pendurthi, R.; Sadaf, M. U. K.; Sakib, N. U.; Pannone, A.; Chen, C.; Han, Y.; Trainor, N.; Kumari, S.; Mc Knight, T. V. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 2024, 625, 276–281.
Lu, D. L.; Chen, Y.; Lu, Z. Y.; Ma, L. K.; Tao, Q. Y.; Li, Z. W.; Kong, L. G.; Liu, L. T.; Yang, X. K.; Ding, S. M. et al. Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 2024, 630, 340–345.
Wang, S. Y.; Liu, X. X.; Xu, M. S.; Liu, L. W.; Yang, D. R.; Zhou, P. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 2022, 21, 1225–1239.
Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.
Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.
Honda, W.; Harada, S.; Ishida, S.; Arie, T.; Akita, S.; Takei, K. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv. Mater. 2015, 27, 4674–4680.
Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366–371.
Zhu, K. C.; Pazos, S.; Aguirre, F.; Shen, Y. Q.; Yuan, Y.; Zheng, W. W.; Alharbi, O.; Villena, M. A.; Fang, B.; Li, X. Y. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 2023, 618, 57–62.
Guan, S. X.; Yang, T. H.; Yang, C. H.; Hong, C. J.; Liang, B. W.; Simbulan, K. B.; Chen, J. H.; Su, C. J.; Li, K. S.; Zhong, Y. L. et al. Monolithic 3D integration of back-end compatible 2D material FET on Si FinFET. npj 2D Mater. Appl. 2023, 7, 9.
Hwangbo, S.; Hu, L.; Hoang, A. T.; Choi, J. Y.; Ahn, J. H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 2022, 17, 500–506.
Zhu, J. D.; Park, J. H.; Vitale, S. A.; Ge, W. J.; Jung, G. S.; Wang, J. T.; Mohamed, M.; Zhang, T. Y.; Ashok, M.; Xue, M. T. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 2023, 18, 456–463.
Tong, L.; Wan, J.; Xiao, K.; Liu, J.; Ma, J. Y.; Guo, X. J.; Zhou, L. H.; Chen, X. Y.; Xia, Y.; Dai, S. et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 2023, 6, 37–44.
Xie, M. S.; Jia, Y. Y.; Nie, C.; Liu, Z. H.; Tang, A.; Fan, S. Q.; Liang, X. Y.; Jiang, L.; He, Z. Z.; Yang, R. Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T-4R structure for high-density memory. Nat. Commun. 2023, 14, 5952.
Kwon, J.; Takeda, Y.; Shiwaku, R.; Tokito, S.; Cho, K.; Jung, S. Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 2019, 10, 54.
Yu, C. H.; Fan, M. L.; Yu, K. C.; Hu, V. P. H.; Su, P.; Chuang, C. T. Evaluation of monolayer and bilayer 2-D transition metal dichalcogenide devices for SRAM applications. IEEE Trans. Electron Devices 2016, 63, 625–630.
Li, Y. J.; Tang, J. S.; Gao, B.; Yao, J.; Fan, A. J. Y.; Yan, B. N.; Yang, Y. C.; Xi, Y.; Li, Y. K.; Li, J. M. et al. Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning. Nat. Commun. 2023, 14, 7140.
Derakhshandeh, J.; Golshani, N.; Ishihara, R.; Mofrad, M. R. T.; Robertson, M.; Morrison, T.; Beenakker, C. I. M. Monolithic 3-D integration of SRAM and image sensor using two layers of single-grain silicon. IEEE Trans. Electron Devices 2011, 58, 3954–3961.
Kim, W.; Jung, S. Static response of three-dimensional and printed complementary organic TFTs-based static random-access memory. IEEE Electron Device Lett. 2022, 43, 438–441.
Srinivasa, S.; Ramanathan, A. K.; Li, X. Q.; Chen, W. H.; Gupta, S. K.; Chang, M. F.; Ghosh, S.; Sampson, J.; Narayanan, V. ROBIN: Monolithic-3D SRAM for enhanced robustness with in-memory computation support. IEEE Trans. Circuits Syst. I: Regul. Pap. 2019, 66, 2533–2545.
Bhattacharya, D.; Jha, N. K. Ultra-high density monolithic 3-D FinFET SRAM with enhanced read stability. IEEE Trans. Circuits Syst. I: Regul. Pap. 2016, 63, 1176–1187.
Fan, M. L.; Hu, V. P. H.; Chen, Y. N.; Su, P.; Chuang, C. T. Stability and performance optimization of heterochannel monolithic 3-D SRAM cells considering interlayer coupling. IEEE Trans. Electron Devices 2014, 61, 3448–3455.
Guler, A.; Jha, N. K. Three-dimensional monolithic FinFET-Based 8T SRAM cell design for enhanced read time and low leakage. IEEE Trans. (VLSI) Syst. 2019, 27, 899–912.
Liu, C. J.; Wan, Y.; Li, L. J.; Lin, C. P.; Hou, T. H.; Huang, Z. Y.; Hu, V. P. H. 2D materials-based static random-access memory. Adv. Mater. 2022, 34, 2107894.
Yu, C. H.; Su, P.; Chuang, C. T. Performance and stability benchmarking of monolithic 3-D logic circuits and SRAM cells with monolayer and few-layer transition metal dichalcogenide MOSFETs. IEEE Trans. Electron Devices 2017, 64, 2445–2451.
Xue, M. T.; Mackin, C.; Weng, W. H.; Zhu, J. D.; Luo, Y. Y.; Luo, S. X. L.; Lu, A. Y.; Hempel, M.; McVay, E.; Kong, J. et al. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 2022, 13, 5064.
Liu, Y.; Wang, S.; Liu, H. P.; Peng, L. M. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat. Commun. 2017, 8, 15649.
Meng, W. Q.; Xu, F. F.; Yu, Z. H.; Tao, T.; Shao, L. W.; Liu, L.; Li, T. T.; Wen, K. C.; Wang, J. P.; He, L. B. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 2021, 16, 1231–1236.