PDF (38.2 MB)
Collect
Submit Manuscript
Review Article | Open Access

A review on monolithic 3D integration: From bulk semiconductors to low-dimensional materials

Ziying Hu1,§Hongtao Li1,§Mingdi Zhang1Zeming Jin1Jixiang Li1Wenku Fu1Yunyun Dai1Yuan Huang1 ()Xia Liu1 ()Yeliang Wang1 ()
School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China

§ Ziying Hu and Hongtao Li contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
This review offers a comprehensive overview of recent advancements in themonolithic three-dimensional (M3D) integration, tracing its evolution from traditionalbulk semiconductors to low-dimensional materials. We also summarize the keyapplications of M3D integrated circuits, including logic circuits, static random accessmemory, various types of sensors, and artificial intelligence (AI) computing.

Abstract

Monolithic three-dimensional (M3D) integration represents a transformative approach in semiconductor technology, enabling the vertical integration of diverse functionalities within a single chip. This review explores the evolution of M3D integration from traditional bulk semiconductors to low-dimensional materials like two-dimensioanl (2D) transition metal dichalcogenides (TMDCs) and carbon nanotubes (CNTs). Key applications include logic circuits, static random access memory (SRAM), resistive random access memory (RRAM), sensors, optoelectronics, and artificial intelligence (AI) processing. M3D integration enhances device performance by reducing footprint, improving power efficiency, and alleviating the von Neumann bottleneck. The integration of 2D materials in M3D structures demonstrates significant advancements in terms of scalability, energy efficiency, and functional diversity. Challenges in manufacturing and scaling are discussed, along with prospects for future research directions. Overall, the M3D integration with low-dimensional materials presents a promising pathway for the development of next-generation electronic devices and systems.

References

[1]
Hisamoto, D.; Lee, W. C.; Kedzierski, J.; Anderson, E.; Takeuchi, H.; Asano, K.; King, T. J.; Bokor, J.; Hu, C. M. A folded-channel MOSFET for deep-sub-tenth micron era. In Proceedings of International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217), San Francisco, USA, 1998, pp 1032–1034.
[2]
Huang, X. J.; Lee, W. C.; Kuo, C.; Hisamoto, D.; Chang, L.; Kedzierski, J.; Anderson, E.; Takeuchi, H.; Choi, Y. K.; Asano, K. et al. Sub 50-nm FinFET: PMOS. In Proceedings of International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318), Washington, USA, 1999, pp 67–70.
[3]

Hisamoto, D.; Lee, W. C.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; King, T. J.; Bokor, J.; Hu, C. M. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 2000, 47, 2320–2325.

[4]

Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.

[5]

Gandhi, R.; Chen, Z. X.; Singh, N.; Banerjee, K.; Lee, S. CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤ 50-mV/decade subthreshold swing. IEEE Electron Device Lett. 2011, 32, 1504–1506.

[6]
Bae, G.; Bae, D. I.; Kang, M.; Hwang, S. M.; Kim, S. S.; Seo, B.; Kwon, T. Y.; Lee, T. J.; Moon, C.; Choi, Y. M. et al. 3nm GAA technology featuring multi-bridge-channel FET for low power and high performance applications. In Proceedings of 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2018, pp 28.7.1–28.7.4.
[7]
Weckx, P.; Ryckaert, J.; Litta, E. D.; Yakimets, D.; Matagne, P.; Schuddinck, P.; Jang, D.; Chehab, B.; Baert, R.; Gupta, M. et al. Novel forksheet device architecture as ultimate logic scaling device towards 2nm. In Proceedings of 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019, pp 36.5.1–36.5.4.
[8]
Barraud, S.; Previtali, B.; Vizioz, C.; Hartmann, J. M.; Sturm, J.; Lassarre, J.; Perrot, C.; Rodriguez, P.; Loup, V.; Magalhaes-Lucas, A. et al. 7-Levels-stacked nanosheet GAA transistors for high performance computing. In Proceedings of 2020 IEEE Symposium on VLSI Technology, Honolulu, USA, 2020, pp 1–2.
[9]
Samavedam, S. B.; Ryckaert, J.; Beyne, E.; Ronse, K.; Horiguchi, N.; Tokei, Z.; Radu, I.; Bardon, M. G.; Na, M. H.; Spessot, A. et al. Future logic scaling: Towards atomic channels and deconstructed chips. In Proceedings of 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2020, pp 1.1.1–1.1.10.
[10]
Jagannathan, H.; Anderson, B.; Sohn, C. W.; Tsutsui, G.; Strane, J.; Xie, R.; Fan, S.; Kim, K. I.; Song, S.; Sieg, S. et al. Vertical-transport nanosheet technology for CMOS scaling beyond lateral-transport devices. In Proceedings of 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2021, pp 26.1.1–26.1.4.
[11]

Chu, C. L.; Hsu, S. H.; Chang, W. Y.; Luo, G. L.; Chen, S. H. Stacked SiGe nanosheets p-FET for Sub-3 nm logic applications. Sci. Rep. 2023, 13, 9433.

[12]

Cherik, I. C.; Mohammadi, S.; Maity, S. K. Vertical tunneling FET with Ge/Si doping-less heterojunction, a high-performance switch for digital applications. Sci. Rep. 2023, 13, 16757.

[13]

Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191.

[14]

Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.

[15]

Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998, 395, 878–881.

[16]

Khlobystov, A. N. Carbon nanotubes: From nano test tube to nano-reactor. ACS Nano 2011, 5, 9306–9312.

[17]

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[18]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[19]

Wang, H. M.; Wang, H. S.; Ma, C. X.; Chen, L. X.; Jiang, C. X.; Chen, C.; Xie, X. M.; Li, A. P.; Wang, X. R. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 2021, 3, 791–802.

[20]

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

[21]

Tong, X.; Ashalley, E.; Lin, F.; Li, H. D.; Wang, Z. M. Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 2015, 7, 203–218.

[22]

Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388–6409.

[23]

Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. J. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246.

[24]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[25]

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

[26]

Yu, W. J.; Li, Z.; Zhou, H. L.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246–252.

[27]

Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

[28]

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

[29]

Islam, A. E. Variability and reliability of single-walled carbon nanotube field effect transistors. Electronics 2013, 2, 332–367.

[30]
Chen, M. C.; Lin, C. Y.; Li, K. H.; Li, L. J.; Chen, C. H.; Chuang, C. H.; Lee, M. D.; Chen, Y. J.; Hou, Y. F.; Lin, C. H. et al. Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for Vth matching and CMOS-compatible 3DFETs. In Proceedings of 2014 IEEE International Electron Devices Meeting, San Francisco, USA, 2014, pp 33.5.1–33.5.4.
[31]

Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72.

[32]

Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.

[33]

Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

[34]

Xiao, X. Y.; Chen, M.; Zhang, J.; Zhang, T. F.; Zhang, L. H.; Jin, Y. H.; Wang, J. P.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Sub-10 nm monolayer MoS2 transistors using single-walled carbon nanotubes as an evaporating mask. ACS Appl. Mater. Interfaces 2019, 11, 11612–11617.

[35]

Liu, L. T.; Kong, L. G.; Li, Q. Y.; He, C. L.; Ren, L. W.; Tao, Q. Y.; Yang, X. D.; Lin, J.; Zhao, B.; Li, Z. W. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 2021, 4, 342–347.

[36]

Li, W. S.; Gong, X. S.; Yu, Z. H.; Ma, L.; Sun, W. J.; Gao, S.; Köroğlu, Ç.; Wang, W. F.; Liu, L.; Li, T. T. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023, 613, 274–279.

[37]

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

[38]

Yuan, S. G.; Yang, Z. B.; Xie, C.; Yan, F.; Dai, J. Y.; Lau, S. P.; Chan, H. L. W.; Hao, J. H. Ferroelectric-driven performance enhancement of graphene field-effect transistors based on vertical tunneling heterostructures. Adv. Mater. 2016, 28, 10048–10054.

[39]
Zhou, R. P.; Appenzeller, J. Three-dimensional integration of multi-channel MoS2 devices for high drive current FETs. In Proceedings of 2018 76th Device Research Conference (DRC), Santa Barbara, USA, 2018, pp 1–2.
[40]
Chung, Y. Y.; Chou, B. J.; Hsu, C. F.; Yun, W. S.; Li, M. Y.; Su, S. K.; Liao, Y. T.; Lee, M. C.; Huang, G. W.; Liew, S. L. et al. First Demonstration of GAA Monolayer-MoS2 Nanosheet nFET with 410μA/μm ID at 1V VD at 40nm gate length. In Proceedings of 2022 International Electron Devices Meeting (IEDM), San Francisco, USA, 2022, pp 34.5.1–34.5.4.
[41]

Hitesh, S.; Dasika, P.; Watanabe, K.; Taniguchi, T.; Majumdar, K. Integration of 3-level MoS2 multibridge channel FET with 2D layered contact and gate dielectric. IEEE Electron Device Lett. 2022, 43, 1993–1996.

[42]

Nazir, G.; Kim, H.; Kim, J.; Kim, K. S.; Shin, D. H.; Khan, M. F.; Lee, D. S.; Hwang, J. Y.; Hwang, C.; Suh, J. et al. Ultimate limit in size and performance of WSe2 vertical diodes. Nat. Commun. 2018, 9, 5371.

[43]

Liu, Y.; Guo, J.; Zhu, E. B.; Wang, P. Q.; Gambin, V.; Huang, Y.; Duan, X. F. Maximizing the current output in self-aligned graphene-InAs-metal vertical transistors. ACS Nano 2019, 13, 847–854.

[44]

Jiang, J. B.; Doan, M. H.; Sun, L. F.; Kim, H.; Yu, H.; Joo, M. K.; Park, S. H.; Yang, H. E. J.; Duong, D. L.; Lee, Y. H. Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 2020, 7, 1902964.

[45]

Zou, X.; Liu, L.; Xu, J. P.; Wang, H. J.; Tang, W. M. Few-layered MoS2 field-effect transistors with a vertical channel of Sub-10 nm. ACS Appl. Mater. Interfaces 2020, 12, 32943–32950.

[46]

Liu, L. T.; Liu, Y.; Duan, X. F. Graphene-based vertical thin film transistors. Sci. China Inf. Sci. 2020, 63, 201401.

[47]

Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G. Y.; Sun, Y. B.; Yang, Y.; Ren, T. L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264.

[48]

Eckel, C.; Weitz, R. T. Bioelectronics goes vertical. Nat. Mater. 2023, 22, 1165–1166.

[49]

Song, X. H.; Liu, Z.; Ma, Z. N.; Hu, Y. J.; Lv, X. J.; Li, X. P.; Yan, Y.; Jiang, Y. R.; Xia, C. X. PVA-assisted metal transfer for vertical WSe2 photodiode with asymmetric van der Waals contacts. Nanophotonics 2023, 12, 3671–3682.

[50]

Zhou, Y. Q.; Tong, L.; Chen, Z. F.; Tao, L.; Li, H.; Pang, Y.; Xu, J. B. Vertical nonvolatile Schottky-barrier-field-effect transistor with self-gating semimetal contact. Adv. Funct. Mater. 2023, 33, 2213254.

[51]

Ma, L. K.; Tao, Q. Y.; Chen, Y.; Lu, Z. Y.; Liu, L. T.; Li, Z. W.; Lu, D. L.; Wang, Y. L.; Liao, L.; Liu, Y. Realizing on/off ratios over 104 for Sub-2 nm vertical transistors. Nano Lett. 2023, 23, 8303–8309.

[52]

Liu, Y.; Zhou, H. L.; Cheng, R.; Yu, W.; Huang, Y.; Duan, X. F. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 2014, 14, 1413–1418.

[53]

Jiang, J. K.; Parto, K.; Cao, W.; Banerjee, K. Ultimate monolithic-3D integration with 2D materials: Rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 2019, 7, 878–887.

[54]

Cao, W.; Bu, H. M.; Vinet, M.; Cao, M.; Takagi, S.; Hwang, S.; Ghani, T.; Banerjee, K. The future transistors. Nature 2023, 620, 501–515.

[55]
Takahashi, K.; Taguchi, Y.; Tomisaka, M.; Yonemura, H.; Hoshino, M.; Ueno, M.; Egawa, Y.; Nemoto, Y.; Yamaji, Y.; Terao, H. et al. Process integration of 3D chip stack with vertical interconnection. In Proceedings of the 54th Electronic Components and Technology Conference, Las Vegas, USA, 2004, pp 601–609.
[56]

Knickerbocker, J. U.; Andry, P. S.; Dang, B.; Horton, R. R.; Interrante, M. J.; Patel, C. S.; Polastre, R. J.; Sakuma, K.; Sirdeshmukh, R.; Sprogis, E. J. et al. Three-dimensional silicon integration. IBM J. Res. Dev. 2008, 52, 553–569.

[57]
Leduc, P.; Di Cioccio, L.; Charlet, B.; Rousseau, M.; Assous, M.; Bouchu, D.; Roule, A.; Zussy, M.; Gueguen, P.; Roman, A. et al. Enabling technologies for 3D chip stacking. In Proceedings of 2008 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, China, 2008, pp 76–78.
[58]
Liu, C.; Lim, S. K. A design tradeoff study with monolithic 3D integration. In Proceedings of Thirteenth International Symposium on Quality Electronic Design (ISQED), Santa Clara, USA, 2012, pp 529–536.
[59]
Kumar, V.; Naeemi, A. An overview of 3D integrated circuits. In Proceedings of 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), Seville, Spain, 2017, pp 311–313.
[60]
Jun, H.; Cho, J.; Lee, K.; Son, H. Y.; Kim, K.; Jin, H.; Kim, K. HBM (high bandwidth memory) DRAM technology and architecture. In Proceedings of 2017 IEEE International Memory Workshop (IMW), Monterey, USA, 2017, pp 1–4.
[61]

Sinha, S.; Xu, X. Q.; Bhargava, M.; Das, S.; Cline, B.; Yeric, G. Stack up your chips: Betting on 3D integration to augment Moore's Law scaling. In Proceedings of 2019 IEEE S3S Conference, San Jose, USA, 2019.

[62]

Xu, C.; Li, H.; Suaya, R.; Banerjee, K. Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs. IEEE Trans. Electron Devices 2010, 57, 3405–3417.

[63]
Shi, J. J.; Nayak, D.; Banna, S.; Fox, R.; Samavedam, S.; Samal, S.; Lim, S. K. A 14nm FinFET transistor-level 3D partitioning design to enable high-performance and low-cost monolithic 3D IC. In Proceedings of 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2016, pp 2.5.1–2.5.4.
[64]
Andrieu, F.; Batude, P.; Brunet, L.; Fenouillet-Béranger, C.; Lattard, D.; Thuries, S.; Billoint, O.; Fournel, R.; Vinet, M. A review on opportunities brought by 3D-monolithic integration for CMOS device and digital circuit. In Proceedings of 2018 International Conference on IC Design & Technology (ICICDT), Otranto, Italy, 2018, pp 141–144.
[65]

Akgun, I.; Stow, D.; Xie, Y. Network-on-chip design guidelines for monolithic 3-D integration. IEEE Micro 2019, 39, 46–53.

[66]
Gopireddy, B.; Torrellas, J. Designing vertical processors in monolithic 3D. In Proceedings of 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA), Phoenix, USA, 2019, pp 643–656.
[67]
Brunet, L.; Batude, P.; Fenouillet-Beranger, C.; Besombes, P.; Hortemel, L.; Ponthenier, F.; Previtali, B.; Tabone, C.; Royer, A.; Agraffeil, C. et al. First demonstration of a CMOS over CMOS 3D VLSI CoolCube™ integration on 300mm wafers. In Proceedings of 2016 IEEE Symposium on VLSI Technology, Honolulu, USA, 2016, pp 1–2.
[68]

Vinet, M.; Batude, P.; Tabone, C.; Previtali, B.; LeRoyer, C.; Pouydebasque, A.; Clavelier, L.; Valentian, A.; Thomas, O.; Michaud, S. et al. 3D monolithic integration: Technological challenges and electrical results. Microelectron. Eng. 2011, 88, 331–335.

[69]
Kim, K. M.; Sinha, S.; Cline, B.; Yeric, G.; Lim, S. K. Four-tier monolithic 3D ICs: Tier partitioning methodology and power benefit study. In Proceedings of 2016 International Symposium on Low Power Electronics and Design, San Francisco Airport, USA, 2016, pp 70–75.
[70]
Fenouillet-Beranger, C.; Beaurepaire, S.; Deprat, F.; de Sousa, A. A.; Brunet, L.; Batude, P.; Rozeau, O.; Andrieu, F.; Besombes, P.; Samson, M. P. et al. Guidelines for intermediate back end of line (BEOL) for 3D sequential integration. In Proceedings of 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, 2017, pp 252–255.
[71]
Wei, H.; Shulaker, M.; Wong, H. S. P.; Mitra, S. Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits. In Proceedings of 2013 IEEE International Electron Devices Meeting, Washington, USA, 2013, pp 19.7.1–19.7.4.
[72]
Liao, S.; Yang, L.; Chiu, T. K.; You, W. X.; Wu, T. Y.; Yang, K. F.; Woon, W. Y.; Ho, W. D.; Lin, Z. C.; Hung, H. Y. et al. Complementary field-effect transistor (CFET) demonstration at 48nm gate pitch for future logic technology scaling. In Proceedings of 2023 International Electron Devices Meeting (IEDM), San Francisco, USA, 2023, pp 1–4.
[73]

Batude, P.; Vinet, M.; Pouydebasque, A.; Clavelier, L.; LeRoyer, C.; Tabone, C.; Previtali, B.; Sanchez, L.; Baud, L.; Roman, A. et al. Enabling 3D monolithic integration. ECS Trans. 2008, 16, 47.

[74]
Coudrain, P.; Batude, P.; Gagnard, X.; Leyris, C.; Ricq, S.; Vinet, M.; Pouydebasque, A.; Moussy, N.; Cazaux, Y.; Giffard, B. et al. Setting up 3D sequential integration for back-illuminated CMOS image sensors with highly miniaturized pixels with low temperature fully depleted SOI transistors. In Proceedings of 2008 IEEE International Electron Devices Meeting, Francisco, USA, 2008, pp 1–4.
[75]
Batude, P.; Vinet, M.; Previtali, B.; Tabone, C.; Xu, C.; Mazurier, J.; Weber, O.; Andrieu, F.; Tosti, L.; Brevard, L. et al. Advances, challenges and opportunities in 3D CMOS sequential integration. In Proceedings of 2011 International Electron Devices Meeting, Washington, USA, 2011, pp 7.3.1–7.3.4.
[76]
Batude, P.; Vinet, M.; Xu, C.; Previtali, B.; Tabone, C.; Le Royer, C.; Sanchez, L.; Baud, L.; Brunet, L.; Toffoli, A. et al. Demonstration of low temperature 3D sequential FDSOI integration down to 50 nm gate length. In Proceedings of 2011 Symposium on VLSI Technology - Digest of Technical Papers, Kyoto, Japan, 2011, pp 158–159.
[77]

Ostling, M.; Hellstrom, P. E. ( Invited) Sequential 3D integration of Ge transistors on Si CMOS. ECS Trans. 2023, 112, 13–24.

[78]
Vandooren, A.; Franco, J.; Wu, Z.; Parvais, B.; Li, W.; Witters, L.; Walke, A.; Peng, L.; Deshpande, V.; Rassoul, N. et al. First demonstration of 3D stacked Finfets at a 45nm fin pitch and 110nm gate pitch technology on 300mm wafers. In Proceedings of 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2018, pp 7.1.1–7.1.4.
[79]
Rachmady, W.; Agrawal, A.; Sung, S. H.; Dewey, G.; Chouksey, S.; Chu-Kung, B.; Elbaz, G.; Fischer, P.; Huang, C. Y.; Jun, K. et al. 300mm heterogeneous 3D integration of record performance layer transfer germanium PMOS with silicon NMOS for low power high performance logic applications. In Proceedings of 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019, pp 29.7.1–29.7.4.
[80]

Lin, Y. W.; Lin, S. W.; Chen, B. A.; Sun, C. J.; Yan, S. C.; Luo, G. L.; Wu, Y. C.; Hou, F. J. 3-D self-aligned stacked Ge nanowire pGAAFET on Si nFinFET of single gate CFET. IEEE J. Electron Devices Soc. 2023, 11, 480–484.

[81]
Hsueh, F. K.; Lee, C. Y.; Xue, C. X.; Shen, C. H.; Shieh, J. M.; Chen, B. Y.; Chiu, Y. C.; Chen, H. C.; Kao, M. H.; Huang, W. H. et al. Monolithic 3D SRAM-CIM macro fabricated with BEOL gate-all-around MOSFETs. In Proceedings of 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019, pp 3.3.1–3.3.4.
[82]
Chang, S. W.; Sung, P. J.; Chu, T. Y.; Lu, D. D.; Wang, C. J.; Lin, N. C.; Su, C. J.; Lo, S. H.; Huang, H. F.; Li, J. H. et al. First demonstration of CMOS inverter and 6T-SRAM based on GAA CFETs structure for 3D-IC applications. In Proceedings of 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019, pp 11.7.1–11.7.4.
[83]
Huang, C. Y.; Dewey, G.; Mannebach, E.; Phan, A.; Morrow, P.; Rachmady, W.; Tung, I. C.; Thomas, N.; Alaan, U.; Paul, R. et al. 3-D self-aligned stacked NMOS-on-PMOS nanoribbon transistors for continued Moore’s law scaling. In Proceedings of 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2020, pp 20.6.1–20.6.4.
[84]

Jung, S. G.; Jang, D.; Min, S. J.; Park, E.; Yu, H. Y. Performance analysis on complementary FET (CFET) relative to standard CMOS with nanosheet FET. IEEE J. Electron Devices Soc. 2022, 10, 78–82.

[85]
Ryckaert, J.; Schuddinck, P.; Weckx, P.; Bouche, G.; Vincent, B.; Smith, J.; Sherazi, Y.; Mallik, A.; Mertens, H.; Demuynck, S. et al. The complementary FET (CFET) for CMOS scaling beyond N3. In Proceedings of 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018, pp 141–142.
[86]
Subramanian, S.; Hosseini, M.; Chiarella, T.; Sarkar, S.; Schuddinck, P.; Chan, B. T.; Radisic, D.; Mannaert, G.; Hikavyy, A.; Rosseel, E. et al. First monolithic integration of 3D complementary FET (CFET) on 300mm wafers. In Proceedings of 2020 IEEE Symposium on VLSI Technology, Honolulu, USA, 2020, pp 1–2.
[87]
Schuddinck, P.; Zografos, O.; Weckx, P.; Matagne, P.; Sarkar, S.; Sherazi, Y.; Baert, R.; Jang, D.; Yakimets, D.; Gupta, A. et al. Device-, Circuit- & Block-level evaluation of CFET in a 4 track library. In Proceedings of 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp T204-T205.
[88]
Panth, S.; Samadi, K.; Du, Y.; Lim, S. K. Power-performance study of block-level monolithic 3D-ICs considering inter-tier performance variations. In Proceedings of 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, USA, 2014, pp 1–6.
[89]
Ku, B. W.; Song, T.; Nieuwoudt, A.; Lim, S. K. Transistor-level monolithic 3D standard cell layout optimization for full-chip static power integrity. In Proceedings of 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Taipei, China, 2017, pp 1–6.
[90]

Chang, K.; Das, S.; Sinha, S.; Cline, B.; Yeric, G.; Lim, S. K. System-level power delivery network analysis and optimization for monolithic 3-D ICs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 888–898.

[91]

Abedin, A.; Zurauskaite, L.; Asadollahi, A.; Garidis, K.; Jayakumar, G.; Malm, B. G.; Hellstrom, P. E.; Ostling, M. Germanium on insulator fabrication for monolithic 3-D integration. IEEE J. Electron Devices Soc. 2018, 6, 588–593.

[92]
Chen, C. L.; Yost, D. R.; Knecht, J. M.; Chapman, D. C.; Oakley, D. C.; Mahoney, L. J.; Donnelly, J. P.; Soares, A. M.; Suntharalingam, V.; Berger, R. et al. Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits. In Proceedings of 2009 IEEE International Conference on 3D System Integration, San Francisco, USA, 2009, pp 1–4.
[93]
Irisawa, T.; Ikeda, K.; Moriyama, Y.; Oda, M.; Mieda, E.; Maeda, T.; Tezuka, T. Demonstration of ultimate CMOS based on 3D stacked InGaAs-OI/SGOI wire channel MOSFETs with independent back gate. In Proceedings of 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, USA, 2014, pp 1–2.
[94]
Deshpande, V.; Hahn, H.; Connor, E. O.; Baumgartner, Y.; Sousa, M.; Caimi, D.; Boutry, H.; Widiez, J.; Brévard, L.; Royer, C. L. et al. First demonstration of 3D SRAM through 3D monolithic integration of InGaAs n-FinFETs on FDSOI Si CMOS with inter-layer contacts. In Proceedings of 2017 Symposium on VLSI Technology, Kyoto, Japan, 2017, pp T74-T75.
[95]
Chang, S. W.; Lu, T. H.; Yang, C. Y.; Yeh, C. J.; Huang, M. K.; Meng, C. F.; Chen, P. J.; Chang, T. H.; Chang, Y. S.; Jhu, J. W. et al. First demonstration of heterogeneous IGZO/Si CFET monolithic 3D integration with dual workfunction gate for ultra low-power SRAM and RF applications. In Proceedings of 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2021, pp 34.4.1–34.4.4.
[96]

Lee, Y. J.; Chang, S. W.; Lee, W. H.; Wang, Y. H. ( Invited, digital presentation) heterogeneous IGZO/Si CFET monolithic 3D integration. ECS Trans. 2022, 109, 145.

[97]
Huang, K. L.; Duan, X. L.; Feng, J. X.; Sun, Y.; Lu, C. Y.; Chen, C. K.; Jiao, G. F.; Lin, X. P.; Shao, J. H.; Yin, S. H. et al. Vertical channel-all-around (CAA) IGZO FET under 50 nm CD with high read current of 32.8 μA/μm (Vth + 1 V), well-performed thermal stability up to 120 °C for low latency, high-density 2T0C 3D DRAM application. In Proceedings of 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, USA, 2022, pp 296–297.
[98]

Yan, S. Z.; Cong, Z. R.; Lu, N. D.; Yue, J. S.; Luo, Q. Recent progress in InGaZnO FETs for high-density 2T0C DRAM applications. Sci. China Inf. Sci. 2023, 66, 200404.

[99]

Gupta, C.; Pasayat, S. S. Vertical GaN and vertical Ga2O3 power transistors: Status and challenges. Phys. Status Solidi (A) 2022, 219, 2100659.

[100]

Hu, Z. Y.; Nomoto, K.; Li, W. S.; Tanen, N.; Sasaki, K.; Kuramata, A.; Nakamura, T.; Jena, D.; Xing, H. G. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett. 2018, 39, 869–872.

[101]

Choi, Y. J.; Kim, S.; Woo, H. J.; Song, Y. J.; Lee, Y.; Kang, M. S.; Cho, J. H. Remote gating of Schottky barrier for transistors and their vertical integration. ACS Nano 2019, 13, 7877–7885.

[102]
Jiang, J. K.; Parto, K.; Cao, W.; Banerjee, K. Monolithic-3D integration with 2D materials: Toward ultimate vertically-scaled 3D-ICs. In Proceedings of 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Burlingame, USA, 2018, pp 1–3.
[103]

Aly, M. M. S.; Gao, M. Y.; Hills, G.; Lee, C. S.; Pitner, G.; Shulaker, M. M.; Wu, T. F.; Asheghi, M.; Bokor, J.; Franchetti, F. et al. Energy-efficient abundant-data computing: The N3XT 1,000x. Computer 2015, 48, 24–33.

[104]

Zhao, C. S.; Tan, C. L.; Lien, D. H.; Song, X. H.; Amani, M.; Hettick, M.; Nyein, H. Y. Y.; Yuan, Z.; Li, L.; Scott, M. C. et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 2020, 15, 53–58.

[105]

Zhao, Y. D.; Li, Q. Q.; Xiao, X. Y.; Li, G. H.; Jin, Y. H.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Three-dimensional flexible complementary metal-oxide-semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano 2016, 10, 2193–2202.

[106]

Xie, Y. N.; Zhang, Z. Y.; Zhong, D. L.; Peng, L. M. Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Res. 2019, 12, 1810–1816.

[107]

Fan, C. W.; Cheng, X. H.; Xu, L.; Zhu, M. G.; Ding, S. J.; Jin, C. H.; Xie, Y. N.; Peng, L. M.; Zhang, Z. Y. Monolithic three-dimensional integration of aligned carbon nanotube transistors for high-performance integrated circuits. InfoMat 2023, 5, e12420.

[108]

Fan, C. W.; Cheng, X. H.; Xie, Y. N.; Liu, F. F.; Deng, X. S.; Zhu, M. G.; Gao, Y. F.; Xiao, M. M.; Zhang, Z. Y. Monolithic three-dimensional integration of carbon nanotube circuits and sensors for smart sensing chips. ACS Nano 2023, 17, 10987–10995.

[109]

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

[110]

Sachid, A. B.; Tosun, M.; Desai, S. B.; Hsu, C. Y.; Lien, D. H.; Madhvapathy, S. R.; Chen, Y. Z.; Hettick, M.; Kang, J. S.; Zeng, Y. P. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 2016, 28, 2547–2554.

[111]

Sachid, A. B.; Desai, S. B.; Javey, A.; Hu, C. M. High-gain monolithic 3D CMOS inverter using layered semiconductors. Appl. Phys. Lett. 2017, 111, 222101.

[112]
Wang, C. H.; McClellan, C.; Shi, Y. Y.; Zheng, X.; Chen, V.; Lanza, M.; Pop, E.; Wong, H. S. P. 3D monolithic stacked 1T1R cells using monolayer MoS2 FET and hBN RRAM fabricated at low (150°C) temperature. In Proceedings of 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2018, pp 22.5.1–22.5.4.
[113]

Hu, V. P. H.; Su, C. W.; Lee, Y. W.; Ho, T. Y.; Cheng, C. C.; Chen, T. C.; Hung, T. Y. T.; Li, J. F.; Chen, Y. G.; Li, L. J. Energy-efficient monolithic 3-D SRAM cell with BEOL MoS2 FETs for SoC scaling. IEEE Trans. Electron Devices 2020, 67, 4216–4221.

[114]

Tang, J.; Wang, Q. Q.; Wei, Z.; Shen, C.; Lu, X. B.; Wang, S. P.; Zhao, Y. C.; Liu, J. Y.; Li, N.; Chu, Y. B. et al. Vertical integration of 2D building blocks for All-2D electronics. Adv. Electron. Mater. 2020, 6, 2000550.

[115]

Liang, L.; Hu, R. J.; Yu, L. W. Toward monolithic growth integration of nanowire electronics in 3D architecture: A review. Sci. China Inf. Sci. 2023, 66, 200406.

[116]
Xiong, X.; Tong, A. Y.; Wang, X.; Liu, S. Y.; Li, X. F.; Huang, R.; Wu, Y. Q. Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion>700 µA/µm and MoS2/WSe2 CFET. In Proceedings of 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2021, pp 7.5.1–7.5.4.
[117]

Xia, Y.; Zong, L. Y.; Pan, Y.; Chen, X. Y.; Zhou, L. H.; Song, Y. W.; Tong, L.; Guo, X. J.; Ma, J. Y.; Gou, S. F. et al. Wafer-scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 2022, 18, 2107650.

[118]
Xiong, X.; Liu, S. Y.; Liu, H. G.; Chen, Y.; Shi, X. H.; Wang, X.; Li, X. F.; Huang, R.; Wu, Y. Q. Top-gate CVD WSe2 pFETs with record-high Id ~ 594 μA/μm, Gm ~ 244 μS/μm and WSe2/MoS2 CFET based half-adder circuit using monolithic 3D integration. In Proceedings of 2022 International Electron Devices Meeting (IEDM), San Francisco, USA, 2022, pp 20.6.1–20.6.4.
[119]

Liu, M. J.; Lan, W. J.; Huang, C. S.; Chen, C. Z.; Cyu, R. H.; Sino, P. A. L.; Yang, Y. L.; Chiu, P. W.; Chuang, F. C.; Shen, C. H. et al. High-performance monolithic 3D integrated complementary inverters based on monolayer n-MoS2 and p-WSe2. Small 2024, 20, 2307728.

[120]

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

[121]

Jia, X. H.; Cheng, Z. X.; Han, B.; Cheng, X.; Wang, Q.; Ran, Y. Q.; Xu, W. J.; Li, Y. P.; Gao, P.; Dai, L. High-performance CMOS inverter array with monolithic 3D architecture based on CVD-Grown n-MoS2 and p-MoTe2. Small 2023, 19, 2207927.

[122]

Sivan, M.; Li, Y. D.; Veluri, H.; Zhao, Y. S.; Tang, B. S.; Wang, X. H.; Zamburg, E.; Leong, J. F.; Niu, J. X.; Chand, U. et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 2019, 10, 5201.

[123]

Liu, M. G.; Niu, J. B.; Yang, G. H.; Chen, K. F.; Lu, W. D.; Liao, F. X.; Lu, C. Y.; Lu, N. D.; Li, L. Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 2023, 9, 2200722.

[124]

Xiao, Z. J.; Liu, L. T.; Chen, Y.; Lu, Z. Y.; Yang, X. K.; Gong, Z. Q.; Li, W. Y.; Kong, L. G.; Ding, S. M.; Li, Z. W. et al. High-density vertical transistors with pitch size down to 20 nm. Adv. Sci. 2023, 10, 2302760.

[125]

Kang, J. H.; Shin, H.; Kim, K. S.; Song, M. K.; Lee, D.; Meng, Y.; Choi, C.; Suh, J. M.; Kim, B. J.; Kim, H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 2023, 22, 1470–1477.

[126]

Jayachandran, D.; Pendurthi, R.; Sadaf, M. U. K.; Sakib, N. U.; Pannone, A.; Chen, C.; Han, Y.; Trainor, N.; Kumari, S.; Mc Knight, T. V. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 2024, 625, 276–281.

[127]

Lu, D. L.; Chen, Y.; Lu, Z. Y.; Ma, L. K.; Tao, Q. Y.; Li, Z. W.; Kong, L. G.; Liu, L. T.; Yang, X. K.; Ding, S. M. et al. Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 2024, 630, 340–345.

[128]

Wang, S. Y.; Liu, X. X.; Xu, M. S.; Liu, L. W.; Yang, D. R.; Zhou, P. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 2022, 21, 1225–1239.

[129]

Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

[130]
Shulaker, M. M.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Monolithic three-dimensional integration of carbon nanotube FETs with silicon CMOS. In Proceedings of 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, USA, 2014, pp 1–2.
[131]
Shulaker, M. M.; Wu, T. F.; Pal, A.; Zhao, L.; Nishi, Y.; Saraswat, K.; Wong, H. S. P. Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs. In Proceedings of 2014 IEEE International Electron Devices Meeting, San Francisco, USA, 2014, pp 27.4.1–27.4.4.
[132]

Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.

[133]
Srimani, T.; Hills, G.; Lau, C.; Shulaker, M. Monolithic three-dimensional imaging system: Carbon nanotube computing circuitry integrated directly over silicon imager. In Proceedings of 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp T24-T25.
[134]

Honda, W.; Harada, S.; Ishida, S.; Arie, T.; Akita, S.; Takei, K. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv. Mater. 2015, 27, 4674–4680.

[135]
Yang, C. C.; Chiu, K. C.; Chou, C. T.; Liao, C. N.; Chuang, M. H.; Hsieh, T. Y.; Huang, W. H.; Shen, C. H.; Shieh, J. M.; Yeh, W. K. et al. Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC. In Proceedings of 2016 IEEE Symposium on VLSI Technology, Honolulu, USA, 2016, pp 1–2.
[136]

Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366–371.

[137]

Zhu, K. C.; Pazos, S.; Aguirre, F.; Shen, Y. Q.; Yuan, Y.; Zheng, W. W.; Alharbi, O.; Villena, M. A.; Fang, B.; Li, X. Y. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 2023, 618, 57–62.

[138]

Guan, S. X.; Yang, T. H.; Yang, C. H.; Hong, C. J.; Liang, B. W.; Simbulan, K. B.; Chen, J. H.; Su, C. J.; Li, K. S.; Zhong, Y. L. et al. Monolithic 3D integration of back-end compatible 2D material FET on Si FinFET. npj 2D Mater. Appl. 2023, 7, 9.

[139]
Su, C. J.; Huang, M. K.; Lee, K. S.; Hu, V. P. H.; Huang, Y. F.; Zheng, B. C.; Yao, C. H.; Lin, N. C.; Kao, K. H.; Hong, T. C. et al. 3D integration of vertical-stacking of MoS2 and Si CMOS featuring embedded 2T1R configuration demonstrated on full wafers. In Proceedings of 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2020, pp 12.2.1–12.2.4.
[140]

Hwangbo, S.; Hu, L.; Hoang, A. T.; Choi, J. Y.; Ahn, J. H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 2022, 17, 500–506.

[141]

Zhu, J. D.; Park, J. H.; Vitale, S. A.; Ge, W. J.; Jung, G. S.; Wang, J. T.; Mohamed, M.; Zhang, T. Y.; Ashok, M.; Xue, M. T. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 2023, 18, 456–463.

[142]

Tong, L.; Wan, J.; Xiao, K.; Liu, J.; Ma, J. Y.; Guo, X. J.; Zhou, L. H.; Chen, X. Y.; Xia, Y.; Dai, S. et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 2023, 6, 37–44.

[143]

Xie, M. S.; Jia, Y. Y.; Nie, C.; Liu, Z. H.; Tang, A.; Fan, S. Q.; Liang, X. Y.; Jiang, L.; He, Z. Z.; Yang, R. Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T-4R structure for high-density memory. Nat. Commun. 2023, 14, 5952.

[144]
Hsueh, F. K.; Shen, C. H.; Shieh, J. M.; Li, K. S.; Chen, H. C.; Huang, W. H.; Wang, H. H.; Yang, C. C.; Hsieh, T. Y.; Lin, C. H. et al. First fully functionalized monolithic 3D+IoT chip with 0.5 V light-electricity power management, 6.8 GHz wireless-communication VCO, and 4-layer vertical ReRAM. In Proceedings of 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2016, pp 2.3.1–2.3.4.
[145]
Wu, T. T.; Shen, C. H.; Shieh, J. M.; Huang, W. H.; Wang, H. H.; Hsueh, F. K.; Chen, H. C.; Yang, C. C.; Hsieh, T. Y.; Chen, B. Y. et al. Low-cost and TSV-free monolithic 3D-IC with heterogeneous integration of logic, memory and sensor analogy circuitry for Internet of Things. In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM), Washington, USA, 2015, pp 25.4.1–25.4.4.
[146]

Kwon, J.; Takeda, Y.; Shiwaku, R.; Tokito, S.; Cho, K.; Jung, S. Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 2019, 10, 54.

[147]

Yu, C. H.; Fan, M. L.; Yu, K. C.; Hu, V. P. H.; Su, P.; Chuang, C. T. Evaluation of monolayer and bilayer 2-D transition metal dichalcogenide devices for SRAM applications. IEEE Trans. Electron Devices 2016, 63, 625–630.

[148]

Li, Y. J.; Tang, J. S.; Gao, B.; Yao, J.; Fan, A. J. Y.; Yan, B. N.; Yang, Y. C.; Xi, Y.; Li, Y. K.; Li, J. M. et al. Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning. Nat. Commun. 2023, 14, 7140.

[149]

Derakhshandeh, J.; Golshani, N.; Ishihara, R.; Mofrad, M. R. T.; Robertson, M.; Morrison, T.; Beenakker, C. I. M. Monolithic 3-D integration of SRAM and image sensor using two layers of single-grain silicon. IEEE Trans. Electron Devices 2011, 58, 3954–3961.

[150]
Zhao, Z. J.; Gomez, J.; Ye, H. C.; Imani, M.; Yin, X. Z.; Deng, S.; Melanson, B.; Zhang, J.; Gong, X.; Abusleme, A. et al. Computational associative memory based on monolithically integrated metal-oxide thin film transistors for update-frequent search applications. In Proceedings of 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2021, pp 37.6.1–37.6.4.
[151]

Kim, W.; Jung, S. Static response of three-dimensional and printed complementary organic TFTs-based static random-access memory. IEEE Electron Device Lett. 2022, 43, 438–441.

[152]
Jung, S. Flexible and printed integrated circuits and sensors. In Proceedings of 2023 IEEE International Flexible Electronics Technology Conference (IFETC), San Jose, USA, 2023, pp 1–3.
[153]

Srinivasa, S.; Ramanathan, A. K.; Li, X. Q.; Chen, W. H.; Gupta, S. K.; Chang, M. F.; Ghosh, S.; Sampson, J.; Narayanan, V. ROBIN: Monolithic-3D SRAM for enhanced robustness with in-memory computation support. IEEE Trans. Circuits Syst. I: Regul. Pap. 2019, 66, 2533–2545.

[154]

Bhattacharya, D.; Jha, N. K. Ultra-high density monolithic 3-D FinFET SRAM with enhanced read stability. IEEE Trans. Circuits Syst. I: Regul. Pap. 2016, 63, 1176–1187.

[155]
Liu, C.; Lim, S. K. Ultra-high density 3D SRAM cell designs for monolithic 3D integration. In Proceedings of 2012 IEEE International Interconnect Technology Conference, San Jose, USA, 2012, pp 1–3.
[156]

Fan, M. L.; Hu, V. P. H.; Chen, Y. N.; Su, P.; Chuang, C. T. Stability and performance optimization of heterochannel monolithic 3-D SRAM cells considering interlayer coupling. IEEE Trans. Electron Devices 2014, 61, 3448–3455.

[157]

Guler, A.; Jha, N. K. Three-dimensional monolithic FinFET-Based 8T SRAM cell design for enhanced read time and low leakage. IEEE Trans. (VLSI) Syst. 2019, 27, 899–912.

[158]
Yu, X. R.; Chuang, M. H.; Chang, S. W.; Chang, W. H.; Hong, T. C.; Chiang, C. H.; Lu, W. H.; Yang, C. Y.; Chen, W. J.; Lin, J. H. et al. Integration design and process of 3-D heterogeneous 6T SRAM with double layer transferred Ge/2Si CFET and IGZO pass gates for 42% reduced cell size. In Proceedings of 2022 International Electron Devices Meeting (IEDM), San Francisco, USA, 2022, pp 20.5.1–20.5.4.
[159]

Liu, C. J.; Wan, Y.; Li, L. J.; Lin, C. P.; Hou, T. H.; Huang, Z. Y.; Hu, V. P. H. 2D materials-based static random-access memory. Adv. Mater. 2022, 34, 2107894.

[160]

Yu, C. H.; Su, P.; Chuang, C. T. Performance and stability benchmarking of monolithic 3-D logic circuits and SRAM cells with monolayer and few-layer transition metal dichalcogenide MOSFETs. IEEE Trans. Electron Devices 2017, 64, 2445–2451.

[161]
Li, H. T.; Li, K. S.; Lin, C. H.; Hsu, J. L.; Chiu, W. C.; Chen, M. C.; Wu, T. T.; Sohn, J.; Eryilmaz, S. B.; Shieh, J. M. et al. Four-layer 3D vertical RRAM integrated with FinFET as a versatile computing unit for brain-inspired cognitive information processing. In Proceedings of 2016 IEEE Symposium on VLSI Technology, Honolulu, USA, 2016, pp 1–2.
[162]
Wu, J. X.; Mo, F.; Saraya, T.; Hiramoto, T.; Kobayashi, M. A monolithic 3D integration of RRAM array with oxide semiconductor FET for in-memory computing in quantized neural network AI applications. In Proceedings of 2020 IEEE Symposium on VLSI Technology, Honolulu, USA, 2020, pp 1–2.
[163]

Xue, M. T.; Mackin, C.; Weng, W. H.; Zhu, J. D.; Luo, Y. Y.; Luo, S. X. L.; Lu, A. Y.; Hempel, M.; McVay, E.; Kong, J. et al. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 2022, 13, 5064.

[164]
Mortazavi Zanjani, S. M.; Holt, M.; Sadeghi, M. M.; Rahimi, S.; Akinwande, D. 3D integrated monolayer graphene-Si CMOS RF gas sensor platform. npj 2D Mater. Appl. 2017 , 1, 36.
[165]

Liu, Y.; Wang, S.; Liu, H. P.; Peng, L. M. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat. Commun. 2017, 8, 15649.

[166]

Meng, W. Q.; Xu, F. F.; Yu, Z. H.; Tao, T.; Shao, L. W.; Liu, L.; Li, T. T.; Wen, K. C.; Wang, J. P.; He, L. B. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 2021, 16, 1231–1236.

Nano Research
Article number: 94907225
Cite this article:
Hu Z, Li H, Zhang M, et al. A review on monolithic 3D integration: From bulk semiconductors to low-dimensional materials. Nano Research, 2025, 18(3): 94907225. https://doi.org/10.26599/NR.2025.94907225
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return