PDF (14.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access | Online First

Fast responsive drug delivery device for thermo-triggered nitric oxide release by surface modified porous frameworks

Yina Zhang1,§Lin Lin1,§Zihao Wang1Yun Zhao1Li Jiang1Qiance Han1Nan Gao1Jiangtao Jia1 ()Xiaodong Feng2 ()Guangshan Zhu1 ()
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
Research Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130000, China

§ Yina Zhang and Lin Lin contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The surface modified porous aromatic framework-1 (PAF-1) was mixed with the water-soluble polymer matrix to prepare a mixed-matrix membrane (MMM) for nitric oxide (NO) release. When applied to the mice, NO could enter the bloodstream through the skin under thermal stimulation to increase NO concentration in the blood of mice to ~ 4.8 μM in 25 min.

Abstract

Nitric oxide (NO) is a gaseous transmitter with a wide range of physiological functions. Herein, a transdermal patch with a non-aggressive drug delivery manner using high specific surface area porous aromatic frameworks (PAFs) as carriers is designed. With the surface-modified PAF-1, the internal hydrophobicity allows the equally hydrophobic NO donor, i.e. isoamyl nitrite (IAN), to be encapsulated into PAF-1’s pores. The external hydrophilicity allows the PAF-1 particles to be mixed well with the water-soluble polymer matrix, polyvinyl alcohol (PVA), to prepare a mixed-matrix membrane (MMM) of IAN@PAF-1-mPEG/PVA as a patch. The MMM could release the NO very fast to ~ 14.3 μM in 6 min under a simulated environment. NO could also enter the bloodstream through the mice’s skin under thermal stimulation and could increase NO concentration in the blood of mice to ~ 4.8 μM in 25 min.

Electronic Supplementary Material

Download File(s)
7227_ESM.pdf (3.5 MB)

References

[1]

Carpenter, A. W.; Schoenfisch, M. H. Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev. 2012, 41, 3742–3752.

[2]

Yu, S. M.; Li, G. W.; Liu, R.; Ma, D.; Xue, W. Dendritic Fe3O4@poly(dopamine)@PAMAM nanocomposite as controllable NO-releasing material: A synergistic photothermal and NO antibacterial study. Adv. Funct. Mater. 2018, 28, 1707440.

[3]

Mann, B. E.; Motterlini, R. CO and NO in medicine. Chem Commun. 2007, 4197–4208

[4]

Fry, N. L.; Mascharak, P. K. Photoactive ruthenium nitrosyls as NO donors: How to sensitize them toward visible light. Acc. Chem. Res. 2011, 44, 289–298.

[5]

Wang, P. G.; Xian, M.; Tang, X. P.; Wu, X. J.; Wen, Z.; Cai, T. W.; Janczuk, A. J. Nitric oxide donors: Chemical activities and biological applications. Chem. Rev. 2002, 102, 1091–1134.

[6]

Jen, M. C.; Serrano, M. C.; van Lith, R.; Ameer, G. A. Polymer-based nitric oxide therapies: Recent insights for biomedical applications. Adv. Funct. Mater. 2012, 22, 239–260.

[7]

Wu, M.; Lu, Z. H.; Wu, K. K.; Nam, C.; Zhang, L.; Guo, J. S. Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing. J. Mater. Chem. B 2021, 9, 7063–7075.

[8]

Sadrearhami, Z.; Nguyen, T. K.; Namivandi-Zangeneh, R.; Jung, K.; Wong, E. H. H.; Boyer, C. Recent advances in nitric oxide delivery for antimicrobial applications using polymer-based systems. J. Mater. Chem. B 2018, 6, 2945–2959.

[9]

Suchyta, D. J.; Schoenfisch, M. H. Controlled release of nitric oxide from liposomes. ACS Biomater. Sci. Eng. 2017, 3, 2136–2143.

[10]

Chu, C. Y.; Lyu, X. M.; Wang, Z. X.; Jin, H.; Lu, S. Y.; Xing, D.; Hu, X. L. Cocktail polyprodrug nanoparticles concurrently release cisplatin and peroxynitrite-generating nitric oxide in cisplatin-resistant cancers. Chem. Eng. J 2020, 402, 126125.

[11]

Zahid, A. A.; Ahmed, R.; Raza ur Rehman, S.; Augustine, R.; Tariq, M.; Hasan, A. Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model. Int. J. Biol. Macromol. 2019, 136, 901–910.

[12]

Xia, M. T.; Yan, Y.; Pu, H. Y.; Du, X. N.; Liang, J. Y.; Sun, Y. N.; Zheng, J. N.; Yuan, Y. Glutathione responsive nitric oxide release for enhanced photodynamic therapy by a porphyrinic MOF nanosystem. Chem. Eng. J 2022, 442, 136295.

[13]

Soto, R. J.; Yang, L.; Schoenfisch, M. H. Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: Controlled scaffold design and nitric oxide release. ACS Appl. Mater. Interfaces 2016, 8, 2220–2231.

[14]

Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem., Int. Ed. 2009, 48, 9457–9460.

[15]

Tian, Y. Y.; Zhu, G. S. Porous aromatic frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986.

[16]

Wadekar, S. R.; Mali, A.; Sanap, G. Recent advances in transdermal drug delivery system (TDDS): A review. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 492–502.

[17]

Phatale, V.; Vaiphei, K. K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release 2022, 351, 361–380.

[18]

Zhou, X. L.; Hao, Y.; Yuan, L. P.; Pradhan, S.; Shrestha, K.; Pradhan, O.; Liu, H. J.; Li, W. Nano-formulations for transdermal drug delivery: A review. Chin. Chem. Lett. 2018, 29, 1713–1724.

[19]

Ma, H. P.; Ren, H.; Zou, X. Q.; Meng, S.; Sun, F. X.; Zhu, G. S. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures. Polym. Chem. 2014, 5, 144–152.

[20]

Yuan, R. R.; Ren, H.; Yan, Z. J.; Wang, A. F.; Zhu, G. S. Robust tri(4-ethynylphenyl)amine-based porous aromatic frameworks for carbon dioxide capture. Polym. Chem. 2014, 5, 2266–2272.

[21]

Lu, W. G.; Yuan, D. Q.; Sculley, J.; Zhao, D.; Krishna, R.; Zhou, H. C. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc. 2011, 133, 18126–18129.

[22]

Islamoglu, T.; Kim, T.; Kahveci, Z.; El-Kadri, O. M.; El-Kaderi, H. M. Systematic postsynthetic modification of nanoporous organic frameworks for enhanced CO2 capture from flue gas and landfill gas. J. Phys. Chem. C 2016, 120, 2592–2599.

[23]

Garibay, S. J.; Weston, M. H.; Mondloch, J. E.; Colón, Y. J.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Accessing functionalized porous aromatic frameworks (PAFs) through a de novo approach. CrystEngComm 2013, 15, 1515–1519.

[24]

Hei, Z. H.; Huang, M. H.; Luo, Y. J.; Wang, Y. X. A well-defined nitro-functionalized aromatic framework (NO2-PAF-1) with high CO2 adsorption: Synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer. Polym. Chem. 2016, 7, 770–774.

[25]

Uliana, A. A.; Bui, N. T.; Kamcev, J.; Taylor, M. K.; Urban, J. J.; Long, J. R. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 2021, 372, 296–299.

[26]

Sewell, C. D.; Wang, Z. W.; Harn, Y. W.; Liang, S.; Gao, L. K.; Cui, X.; Lin, Z. Q. Tailoring oxygen evolution reaction activity of metal-oxide spinel nanoparticles via judiciously regulating surface-capping polymers. J. Mater. Chem. A 2021, 9, 20375–20384.

[27]

Ji, W. Y.; Duan, F.; Su, C. L.; Sun, B. G.; Liu, L. L.; Cao, Y.; Cao, X. Z.; Luo, J. Q.; Li, Y. P.; Cao, H. B. New insights into confined diffusion mechanisms of end-capping reagent regulated interfacial polymerization. J. Membr. Sci. 2023, 681, 121754.

[28]

Wang. M. J.; Li, Q. Q.; Shi, C. Z.; Lv, J.; Xu, Y. D.; Yang, J. J.; Chua, S. L.; Jia, L. R.; Chen, H. W.; Liu, Q. et al. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation. Nat. Nanotechnol. 2023, 18, 403–411.

[29]

Han, J. F.; Lou, Q.; Ding, Z. Z.; Zheng, G. S.; Ni, Q. C.; Song, R. W.; Liu, K. K.; Zang, J. H.; Dong, L.; Shen, C. L. et al. Chemiluminescent carbon nanodots for dynamic and guided antibacteria. Light. Sci. Appl. 2023, 12, 104.

[30]

Chen, Y. H.; Tian, F. L.; Yao, J. C.; Li, L. J.; Cui, Y. H.; Yang, H. M.; Chen, Z. G.; Sun, G. X.; Shuttleworth, P. S.; Yue, H. B. Biobased polyurethane adhesives derived from vegetable oil and rosin for flexible packaging applications. ACS Appl. Polym. Mater. 2024, 6, 6469–6481.

[31]

Guo, X. X.; Mao, T. H.; Wang, Z. F.; Cheng, P.; Chen, Y.; Ma, S. Q.; Zhang, Z. J. Fabrication of photoresponsive crystalline artificial muscles based on PEGylated covalent organic framework membranes. ACS Cent. Sci. 2020, 6, 787–794.

[32]

Zhang, L.; Wu, M. Y.; Wang, Z. M.; Guo, H. Z.; Wang, L.; Wu, M. H. Phosphorescence tuning of fluorine, oxygen-codoped carbon dots by substrate engineering. ACS Sustain. Chem. Eng. 2021, 9, 16262–16269.

[33]

Peng, J.; Wu, D. X.; Jiang, Z. W.; Lu, P. S.; Wang, Z. X.; Ma, T. H.; Yang, M.; Li, H.; Chen, L. Q.; Wu, F. Stable interface between sulfide solid electrolyte and room-temperature liquid lithium anode. ACS Nano 2023, 17, 12706–12722.

[34]

Zhang, P. P.; Zhang, C.; Wang, L.; Dong, J. C.; Gai, D. X.; Wang, W. J.; Nguyen, T. S.; Yavuz, C. T.; Zou, X. Q.; Zhu, G. S. Basic alkylamine functionalized PAF-1 hybrid membrane with high compatibility for superior CO2 separation from flue gas. Adv. Funct. Mater. 2023, 33, 2210091.

[35]

Chen, P.; Sun, J. S.; Zhang, L.; Ma, W. Y.; Sun, F. X.; Zhu, G. S. Porous aromatic framework (PAF-1) as hyperstable platform for enantioselective organocatalysis. Sci. China Mater. 2019, 62, 194–202.

[36]

Zhang, C.; Dong, J. C.; Zhang, P. P.; Sun, L.; Yang, L.; Wang, W. J.; Zou, X. Q.; Chen, Y. N.; Shang, Q. K.; Feng, D. Y. et al. Unique fluorophilic pores engineering within porous aromatic frameworks for trace perfluorooctanoic acid removal. Natl. Sci. Rev. 2023, 10, nwad191.

[37]

Wang, Z. H.; Zhang, Y. N.; Jiang, L.; Han, Q. C.; Wang, Q. H. Y.; Jia, J. T.; Zhu, G. S. Post-modified porous aromatic frameworks for carbon dioxide capture. Chem. Synth. 2024, 4, 40.

[38]

Navale, G. R.; Singh, S.; Ghosh, K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord. Chem. Rev. 2023, 481, 215052.

[39]

Shamloo, A.; Aghababaie, Z.; Afjoul, H.; Jami, M.; Bidgoli, M. R.; Vossoughi, M.; Ramazani, A.; Kamyabhesari, K. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. Int. J. Pharm. 2021, 592, 120068.

[40]

Yang, M.; Wang, Z. Y.; Li, M. N.; Yin, Z. L.; Butt, H. A. The synthesis, mechanisms, and additives for bio-compatible polyvinyl alcohol hydrogels: A review on current advances, trends, and future outlook. J. Vinyl. Addit. Technol. 2023, 29, 939–959.

[41]

Yu, J.; Zhang, R. L.; Chen, B. H.; Liu, X. L.; Jia, Q.; Wang, X. F.; Yang, Z.; Ning, P. B.; Wang, Z. L.; Yang, Y. Injectable reactive oxygen species-responsive hydrogel dressing with sustained nitric oxide release for bacterial ablation and wound healing. Adv. Funct. Mater. 2022, 32, 2202857.

[42]

Zhang, S.; Guan, K. L.; Zhang, Y. X.; Zhang, J. Q.; Fu, H. Y.; Wu, T.; Ouyang, D. L.; Liu, C. Q.; Wu, Q.; Chen, Z. W. A self-activated NO-releasing hydrogel depot for photothermal enhanced sterilization. Nano Res. 2023, 16, 5346–5356.

[43]

Yang, Y. T.; Li, M.; Pan, G. Y.; Chen, J. Y.; Guo, B. L. Multiple stimuli-responsive nanozyme-based cryogels with controlled NO release as self-adaptive wound dressing for infected wound healing. Adv. Funct. Mater. 2023, 33, 2214089.

[44]

Yao, S.; Wang, Y. T.; Chi, J. J.; Yu, Y. R.; Zhao, Y, J.; Luo, Y.; Wang, Y. A. Porous MOF microneedle array patch with photothermal responsive nitric oxide delivery for wound healing. Adv. Sci. 2022, 9, 2103449.

Nano Research
Cite this article:
Zhang Y, Lin L, Wang Z, et al. Fast responsive drug delivery device for thermo-triggered nitric oxide release by surface modified porous frameworks. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907227
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return