PDF (35.9 MB)
Collect
Submit Manuscript
Research Article | Open Access

Designing polymer composite electrolyte and Si nanosheets electrode for integrated silicon-based solid-state battery

Xianzheng Liu1,§ ()Xintong Wang2,§Feng Li1Huaying Qiao1Lihua Jiang1Zhiyuan Wan1Zhigang Wei1Xiaoming Liu3
Academy of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China
School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
Scientific Research Office, Yantai Nanshan University, Yantai 265713, China

§ Xianzheng Liu and Xintong Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
By designing and fabricating a high-performance composite solid electrolyte and employing a secondary coating process, an integrated silicon-based solid-state lithium battery (Si-SSLB) was constructed. This integrated battery design significantly improves the solid–solid interfacial contact between the electrode and electrolyte, providing more active sites and pathways for ion transfer.

Abstract

Silicon-based solid-state lithium batteries (Si-SSLBs) are of great interest due to their extremely high safety and energy density. However, the low ionic conductivity of solid electrolytes hinders their use in batteries, the volume expansion of the Si anode during Li+ insertion/extraction, and the high interfacial resistance between the solid electrolyte and electrodes. In this study, a composite solid electrolyte (CSE) with excellent ionic conductivity (1.20 × 10−4 S·cm−1) at 60 °C was developed by introducing the plasticizer succinonitrile (SN) and the inorganic solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) into poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) matrix. A three-dimensional (3D) face-contact Si/PVHS-L/LFP (PVHS-L: PVDF-HFP/SN/LATP and LFP: LiFePO4) solid-state battery model was constructed by a secondary coating process based on the use of PVHS-L. This approach forms a fully integrated electrode–electrolyte interface, enhancing Li+ transport efficiency compared to conventional mechanically assembled batteries. The integrated device achieves maximum interfacial contact, resulting in superior electrochemical performance. Specifically, the battery integrated with Si anode, PVHS-L CSE and LFP cathode delivers a discharge specific capacity of 122.6 mAh·g−1 after 100 cycles, with a capacity retention rate of 81.5%. This work provides a new strategy to address the challenge of achieving stable and continuous interfacial contact in Si-SSLBs.

Electronic Supplementary Material

Download File(s)
7230_ESM.pdf (2.9 MB)

References

[1]

He, S. G.; Huang, S. M.; Wang, S. F.; Mizota, I.; Liu, X.; Hou, X. H. Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications. Energy Fuels 2021, 35, 944–964.

[2]

Li, C.; Ju, Y. H.; Yoshitake, H.; Yoshio, M.; Wang, H. Y. Preparation of Si-graphite dual-ion batteries by tailoring the voltage window of pretreated Si-anodes. Mater. Today Energy 2018, 8, 174–181.

[3]

Xu, Z. X.; Yang, J.; Li, H. P.; Nuli, Y.; Wang, J. L. Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A 2019, 7, 9432–9446.

[4]

Masarapu, C.; Wang, L. P.; Li, X.; Wei, B. Q. Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure. Adv. Energy Mater. 2012, 2, 546–552.

[5]

Li, P.; Zhao, G. Q.; Zheng, X. B.; Xu, X.; Yao, C. H.; Sun, W. P.; Dou, S. X. Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 2018, 15, 422–446.

[6]

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

[7]

Zhang, Y. G.; Du, N.; Yang, D. R. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. Nanoscale 2019, 11, 19086–19104.

[8]

Snow, E. S.; Campbell, P. M. Fabrication of Si nanostructures with an atomic force microscope. Appl. Phys. Lett. 1994, 64, 1932–1934.

[9]

Javidani, M.; Larouche, D. Application of cast Al-Si alloys in internal combustion engine components. Int. Mater. Rev. 2014, 59, 132–158.

[10]

Li, J. W.; Lin, Y. H.; Wang, F. M.; Shi, J.; Sun, J. F.; Ban, B. Y.; Liu, G. C.; Chen, J. Progress in recovery and recycling of kerf loss silicon waste in photovoltaic industry. Sep. Purif. Technol. 2021, 254, 117581.

[11]

Ge, M. Z.; Cao, C. Y.; Biesold, G. M.; Sewell, C. D.; Hao, S. M.; Huang, J. Y.; Zhang, W.; Lai, Y. K.; Lin, Z. Q. Recent advances in silicon-based electrodes: From fundamental research toward practical applications. Adv. Mater. 2021, 33, 2004577.

[12]

Rehman, W. U.; Wang, H. F.; Manj, R. Z. A.; Luo, W.; Yang, J. P. When silicon materials meet natural sources: Opportunities and challenges for low-cost lithium storage. Small 2021, 17, 1904508.

[13]

Wu, F.; Yuan, Y. X.; Cheng, X. B.; Bai, Y.; Li, Y.; Wu, C.; Zhang, Q. Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Mater. 2018, 15, 148–170.

[14]

Ye, T. T.; Li, L. H.; Zhang, Y. Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 2020, 30, 2000077.

[15]

Jaumaux, P.; Wu, J. R.; Shanmukaraj, D.; Wang, Y. Z.; Zhou, D.; Sun, B.; Kang, F. Y.; Li, B. H.; Armand, M.; Wang, G. X. Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 2021, 31, 2008644.

[16]

Tan, S. J.; Wang, W. P.; Tian, Y. F.; Xin, S.; Guo, Y. G. Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: Progress and prospects. Adv. Funct. Mater. 2021, 31, 2105253.

[17]

He, Y.; Jiang, L.; Chen, T. W.; Xu, Y. B.; Jia, H. P.; Yi, R.; Xue, D. C.; Song, M.; Genc, A.; Bouchet-Marquis, C. et al. Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 2021, 16, 1113–1120.

[18]

Song, A. M.; Zhang, W. J.; Guo, H. T.; Dong, L.; Jin, T.; Shen, C.; Xie, K. Y. A review on the features and progress of silicon anodes-based solid-state batteries. Adv. Energy Mater. 2023, 13, 2301464.

[19]

Yan, W. L.; Mu, Z. L.; Wang, Z. X.; Huang, Y. L.; Wu, D. X.; Lu, P. S.; Lu, J. Z.; Xu, J. R.; Wu, Y. J.; Ma, T. H. et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy 2023, 8, 800–813.

[20]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[21]

Zhao, M. C.; Zhang, J.; Costa, C. M.; Lanceros-Méndez, S.; Zhang, Q.; Wang, W. Unveiling challenges and opportunities in silicon-based all-solid-state batteries: Thin-film bonding with mismatch strain. Adv. Mater. 2024, 36, 2308590.

[22]

Pan, H.; Wang, L.; Shi, Y.; Sheng, C. C.; Yang, S. X.; He, P.; Zhou, H. S. A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure. Nat. Commun. 2024, 15, 2263.

[23]

Tao, J. M.; Han, J. J.; Wu, Y. B.; Yang, Y. M.; Chen, Y.; Li, J. X.; Huang, Z. G.; Lin, Y. B. Unraveling the performance decay of micro-sized silicon anodes in sulfide-based solid-state batteries. Energy Storage Mater. 2024, 64, 103082.

[24]

Doux, J. M.; Yang, Y. Y. C.; Tan, D. H. S.; Nguyen, H.; Wu, E. A.; Wang, X. F.; Banerjee, A.; Meng, Y. S. Pressure effects on sulfide electrolytes for all solid-state batteries. J. Mater. Chem. A 2020, 8, 5049–5055.

[25]

Sun, Q.; Zeng, G. F.; Xu, X.; Li, J.; Biendicho, J. J.; Wang, S.; Tian, Y. H.; Ci, L.; Cabot, A. Are sulfide-based solid-state electrolytes the best pair for si anodes in Li-ion batteries. Adv. Energy Mater. 2024, 14, 2402048.

[26]

Li, Z.; Fu, J. L.; Zhou, X. Y.; Gui, S. W.; Wei, L.; Yang, H.; Li, H.; Guo, X. Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 2023, 10, 2201718.

[27]

Liu, Y. L.; Xu, Y. L. Porous membrane host-derived in-situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chem. Eng. J. 2022, 433, 134471.

[28]

Huang, R. L.; Xu, R. C.; Zhang, J. T.; Wang, J. Y.; Zhou, T. Y.; Liu, M. Y.; Wang, X. L. PVDF-HFP-SN-based gel polymer electrolyte for high-performance lithium-ion batteries. Nano Res. 2023, 16, 9480–9487.

[29]

Wei, T.; Zhang, Z. H.; Wang, Z. M.; Zhang, Q.; Ye, Y. S.; Lu, J. H.; Rahman, Z. U.; Zhang, Z. W. Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl. Energy Mater. 2020, 3, 9428–9435.

[30]

Cao, J. H.; Zhu, B. K.; Xu, Y. Y. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membr. Sci. 2006, 281, 446–453.

[31]

Luo, B. C.; Wang, X. H.; Wang, H. X.; Cai, Z. M.; Li, L. T. P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Compos. Sci. Technol. 2017, 151, 94–103.

[32]

Zhang, H.; Han, H. B.; Cheng, X. R.; Zheng, L. P.; Cheng, P. F.; Feng, W. F.; Nie, J.; Armand, M.; Huang, X. J.; Zhou, Z. B. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties. J. Power Sources. 2015, 296, 142–149.

[33]

Xi, G.; Xiao, M.; Wang, S. J.; Han, D. M.; Li, Y. N.; Meng, Y. Z. Polymer-based solid electrolytes: Material selection, design, and application. Adv. Funct. Mater. 2021, 31, 2007598.

[34]

Pan, J.; Zhao, P.; Wang, N. N.; Huang, F. Q.; Dou, S. X. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 2022, 15, 2753–2775.

[35]

Li, J. W.; Guo, C. Y.; Tao, L. J.; Meng, J. S.; Xu, X. M.; Liu, F.; Wang, X. P. Electrode and electrolyte design strategies toward fast-charging lithium-ion batteries. Adv. Funct. Mater. 2024, 34, 2409097.

[36]

Cao, D. X.; Sun, X.; Li, Y. J.; Anderson, A.; Lu, W. Q.; Zhu, H. L. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes. Adv. Mater. 2022, 34, 2200401.

[37]

Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, 2002741.

[38]

Wang, M. Q.; Huai, L. Y.; Hu, G. H.; Yang, S. S.; Ren, F. H.; Wang, S. W.; Zhang, Z. G.; Chen, Z. L.; Peng, Z.; Shen, C. et al. Effect of LiFSI concentrations to form thickness-and modulus-controlled SEI layers on lithium metal anodes. J. Phys. Chem. C 2018, 122, 9825–9834.

[39]

Gu, L. H.; Han, J. J.; Chen, M. F.; Zhou, W. J.; Wang, X. F.; Xu, M.; Lin, H. C.; Liu, H. D.; Chen, H. X.; Chen, J. Z. et al. Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries. Energy Storage Mater. 2022, 52, 547–561.

[40]

Han, X.; Gu, L. H.; Sun, Z. F.; Chen, M. F.; Zhang, Y. G.; Luo, L. S.; Xu, M.; Chen, S. Y.; Liu, H. D.; Wan, J. Y. et al. Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon-silver-carbon composite anodes for solid-state batteries. Energy Environ. Sci. 2023, 16, 5395–5408.

[41]

Yang, L. Y.; Wang, Z. J.; Feng, Y. C.; Tan, R.; Zuo, Y. X.; Gao, R. T.; Zhao, Y.; Han, L.; Wang, Z. Q.; Pan, F. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701437.

Nano Research
Article number: 94907230
Cite this article:
Liu X, Wang X, Li F, et al. Designing polymer composite electrolyte and Si nanosheets electrode for integrated silicon-based solid-state battery. Nano Research, 2025, 18(3): 94907230. https://doi.org/10.26599/NR.2025.94907230
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return