The surge in data volume and algorithmic complexity necessitates the development of highly integrated, low-power, and high-performance electronic components. Conventional complementary metal-oxide-semiconductor (CMOS) inverters, which rely solely on isotropic two-dimensional materials, encounter limitations due to their single voltage output, thereby impeding the miniaturization of integrated circuits. In this study, we introduce anisotropic CMOS inverters based on n-ReS2 and p-WSe2, which demonstrate distinct voltage transfer characteristics across various crystalline orientations. These inverters exhibit the lowest voltage gain along the a-axis of ReS2 flakes, whereas they possess the highest voltage gain and the lowest static power consumption along the b-axis. By optimizing the gate dielectric on substrates, the inverter achieves an enhanced voltage gain of 30.8 and an ultra-low power consumption of 5.4 pW along the b-axis direction, when fabricated on a 35 nm Al2O3 substrate deposited via atomic layer deposition (ALD) method. Additionally, it captures a clear dynamic switching behavior at a supply voltage of 3 V under a 20 Hz square wave input signal. This study proposes a potential approach to circuit miniaturization by leveraging anisotropic two-dimensional materials for the integration of diverse voltage transfer characteristics within a single logic device, thereby achieving a combination of low power consumption and high-density integration.
Ieong, M.; Doris, B.; Kedzierski, J.; Rim, K.; Yang, M. Silicon device scaling to the sub-10-nm regime. Science 2004, 306, 2057–2060.
Shen, Y.; Dong, Z. Y.; Sun, Y. B.; Guo, H.; Wu, F.; Li, X. L.; Tang, J.; Liu, J.; Wu, X.; Tian, H. et al. The trend of 2D transistors toward integrated circuits: Scaling down and new mechanisms. Adv. Mater. 2022, 34, 2201916.
Tang, J.; Wang, Q. Q.; Tian, J. P.; Li, X. M.; Li, N.; Peng, Y. L.; Li, X. Z.; Zhao, Y. C.; He, C. L.; Wu, S. Y. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 2023, 14, 3633.
Yan, Y. K.; Zhao, Y.; Liu, Y. Q. Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 2022, 60, 311–327.
Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.
Schulz, M. The end of the road for silicon. Nature 1999, 399, 729–730.
Wang, S. Y.; Liu, X. X.; Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 2022, 34, 2106886.
Zhou, J. S.; Xin, K. Y.; Zhao, X. K.; Li, D. M.; Wei, Z. M.; Xia, J. B. Recent progress in optoelectronic applications of hybrid 2D/3D silicon-based heterostructures. Sci. China Mater. 2022, 65, 876–895.
Cheng, L.; Liu, Y. Y. What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides. J. Am. Chem. Soc. 2018, 140, 17895–17900.
Jiang, S. J.; Li, J. Y.; Chen, W. Z.; Yin, H. B.; Zheng, G. P.; Wang, Y. X. InTeI: A novel wide-bandgap 2D material with desirable stability and highly anisotropic carrier mobility. Nanoscale 2020, 12, 5888–5897.
Liu, H. W.; Fang, L. Z.; Zhu, X. L.; Zhu, C. G.; Sun, X. X.; Xu, G. Z.; Zheng, B. Y.; Liu, Y.; Luo, Z. Y.; Wang, H. et al. Epitaxial van der Waals contacts for low schottky barrier MoS2 field effect transistors. Nano Res. 2023, 16, 11832–11838.
Xu, S. H.; Huang, Z.; Guan, J.; Hu, Y. W. Nanoforming of transferred metal contacts for enhanced two-dimensional field effect transistors. Nano Res. 2024, 17, 3210–3216.
Elahi, E.; Suleman, M.; Nisar, S.; Sharma, P. R.; Iqbal, M. W.; Patil, S. A.; Kim, H.; Abbas, S.; Chavan, V. D.; Dastgeer, G. et al. Robust approach towards wearable power efficient transistors with low subthreshold swing. Mater. Today Phys. 2023, 30, 100943.
Hu, J. Y.; Li, H. X.; Chen, A. Z.; Zhang, Y. S.; Wang, H. L.; Fu, Y.; Zhou, X.; Loh, K. P.; Kang, Y.; Chai, J. et al. All-2D-materials subthreshold-free field-effect transistor with near-ideal switching slope. ACS Nano 2024, 18, 20236–20246.
Vu, Q. A.; Fan, S. D.; Lee, S. H.; Joo, M. K.; Yu, W. J.; Lee, Y. H. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 2018, 5, 031001.
Wang, Y.; Bai, X. Y.; Chu, J. W.; Wang, H. B.; Rao, G. F.; Pan, X. Q.; Du, X. C.; Hu, K.; Wang, X. P.; Gong, C. H. et al. Record-low subthreshold-swing negative-capacitance 2D field-effect transistors. Adv. Mater. 2020, 32, 2005353.
Cao, W.; Kang, J. H.; Liu, W.; Banerjee, K. A compact current-voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Devices 2014, 61, 4282–4290.
Miller, E. J.; Dang, X. Z.; Yu, E. T. Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors. J. Appl. Phys. 2000, 88, 5951–5958.
Su, S. K.; Chuu, C. P.; Li, M. Y.; Cheng, C. C.; Wong, H. S. P.; Li, L. J. Layered semiconducting 2D materials for future transistor applications. Small Struct. 2021, 2, 2000103.
Li, M. M.; Zhang, X. Y.; Zhang, Z. M.; Peng, G.; Zhu, Z. H.; Li, J.; Qin, S. Q.; Zhu, M. J. Unipolar p-type monolayer WSe2 field-effect transistors with high current density and low contact resistance enabled by van der Waals contacts. Nano Res. 2024, 17, 10162–10169.
Chiu, M. H.; Tang, H. L.; Tseng, C. C.; Han, Y. M.; Aljarb, A.; Huang, J. K.; Wan, Y.; Fu, J. H.; Zhang, X. X.; Chang, W. H. et al. Metal-guided selective growth of 2D materials: Demonstration of a bottom-up CMOS inverter. Adv. Mater. 2019, 31, 1900861.
Li, Y. H.; Yu, J. R.; Wei, Y. C.; Wang, Y. F.; Cheng, L. Q.; Feng, Z. Y.; Yang, Y.; Wang, Z. L.; Sun, Q. J. Ambipolar tribotronic transistor of MoTe2. Nano Res. 2023, 16, 11907–11913.
Pezeshki, A.; Hosseini Shokouh, S. H.; Jeon, P. J.; Shackery, I.; Kim, J. S.; Oh, I. K.; Jun, S. C.; Kim, H.; Im, S. Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano 2016, 10, 1118–1125.
Su, Y.; Kshirsagar, C. U.; Robbins, M. C.; Haratipour, N.; Koester, S. J. Symmetric complementary logic inverter using integrated black phosphorus and MoS2 transistors. 2D Mater. 2016, 3, 011006.
Wang, J. L.; Guo, X. Y.; Yu, Z. H.; Ma, Z. C.; Liu, Y. H.; Lin, Z. Y.; Chan, M.; Zhu, Y.; Wang, X. R.; Chai, Y. Low-power complementary inverter with negative capacitance 2D semiconductor transistors. Adv. Funct. Mater. 2020, 30, 2003859.
Kong, L. G.; Chen, Y.; Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 2021, 14, 1768–1783.
Xu, H.; Zhang, H. M.; Guo, Z. X.; Shan, Y. W.; Wu, S. W.; Wang, J. L.; Hu, W. D.; Liu, H. Q.; Sun, Z. Z.; Luo, C. et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, 1803465.
Yu, L. L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y. X.; Dubey, M.; Kaxiras, E.; Kong, J.; Wang, H. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055–3063.
Dathbun, A.; Kim, Y.; Kim, S.; Yoo, Y.; Kang, M. S.; Lee, C.; Cho, J. H. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 2017, 17, 2999–3005.
Waltl, M.; Knobloch, T.; Tselios, K.; Filipovic, L.; Stampfer, B.; Hernandez, Y.; Waldhör, D.; Illarionov, Y.; Kaczer, B.; Grasser, T. Perspective of 2D integrated electronic circuits: Scientific pipe dream or disruptive technology. Adv. Mater. 2022, 34, 2201082.
Jeon, P. J.; Kim, J. S.; Lim, J. Y.; Cho, Y.; Pezeshki, A.; Lee, H. S.; Yu, S.; Min, S. W.; Im, S. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 2015, 7, 22333–22340.
Zou, T. Y.; Kim, H. J.; Kim, S.; Liu, A.; Choi, M. Y.; Jung, H.; Zhu, H. H.; You, I.; Reo, Y.; Lee, W. J. et al. High-performance solution-processed 2D p-type WSe2 transistors and circuits through molecular doping. Adv. Mater. 2023, 35, 2208934.
Du, W. Y.; Jia, X. H.; Cheng, Z. X.; Xu, W. J.; Li, Y. P.; Dai, L. Low-power-consumption CMOS inverter array based on CVD-grown p-MoTe2 and n-MoS2. iScience 2021, 24, 103491.
Lee, H. S.; Choi, K.; Kim, J. S.; Yu, S.; Ko, K. R.; Im, S. Coupling two-dimensional MoTe2 and InGaZnO thin-film materials for hybrid PN junction and CMOS inverters. ACS Appl. Mater. Interfaces 2017, 9, 15592–15598.
Lim, J. Y.; Pezeshki, A.; Oh, S.; Kim, J. S.; Lee, Y. T.; Yu, S.; Hwang, D. K.; Lee, G. H.; Choi, H. J.; Im, S. Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv. Mater. 2017, 29, 1701798.
Choi, Y.; Kim, K.; Lim, S. Y.; Kim, J.; Park, J. M.; Kim, J. H.; Lee, Z.; Cheong, H. Complete determination of the crystallographic orientation of ReX2 (X = S, Se) by polarized Raman spectroscopy. Nanoscale Horiz. 2020, 5, 308–315.
Chen, Y. J.; Wang, Z. J.; Du, J. T.; Si, C.; Jiang, C. B.; Yang, S. X. Wrinkled rhenium disulfide for anisotropic nonvolatile memory and multiple artificial neuromorphic synapses. ACS Nano 2024, 18, 30871–30883.
Shen, W. F.; Hu, C. G.; Tao, J.; Liu, J.; Fan, S. Q.; Wei, Y. X.; An, C. H.; Chen, J. C.; Wu, S.; Li, Y. N. Resolving the optical anisotropy of low-symmetry 2D materials. Nanoscale 2018, 10, 8329–8337.
Zhong, M. Z.; Meng, H. T.; Liu, S. J.; Yang, H.; Shen, W. F.; Hu, C. G.; Yang, J. H.; Ren, Z. H.; Li, B.; Liu, Y. Y. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 2021, 15, 1701–1709.
Yang, Y. S.; Liu, S. C.; Wang, Y.; Long, M. S.; Dai, C. M.; Chen, S. Y.; Zhang, B.; Sun, Z.; Sun, Z. Y.; Hu, C. G. et al. In-plane optical anisotropy of low-symmetry 2D GeSe. Adv. Opt. Mater. 2019, 7, 1801311.
Yang, S. X.; Yang, Y. H.; Wu, M. H.; Hu, C. G.; Shen, W. F.; Gong, Y. J.; Huang, L.; Jiang, C. B.; Zhang, Y. Z.; Ajayan, P. M. Highly in-plane optical and electrical anisotropy of 2D germanium arsenide. Adv. Funct. Mater. 2018, 28, 1707379.
Chen, Y. J.; Wang, Y. K.; Shen, W. F.; Wu, M. H.; Li, B.; Zhang, Q.; Liu, S.; Hu, C. G.; Yang, S. X.; Gao, Y. N. et al. Strain and interference synergistically modulated optical and electrical properties in ReS2/graphene heterojunction bubbles. ACS Nano 2022, 16, 16271–16280.
Chenet, D. A.; Aslan, B.; Huang, P. Y.; Fan, C.; Van Der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.
Liu, H.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit. Nano Res. 2020, 13, 1644–1650.
Salimian, S.; Xiang, S. H.; Colonna, S.; Ronci, F.; Fosca, M.; Rossella, F.; Beltram, F.; Flammini, R.; Heun, S. Morphology and magneto-transport in exfoliated graphene on ultrathin crystalline β-Si3N4(0001)/Si(111). Adv. Mater. Interfaces 2020, 7, 1902175.
Wang, L.; Chen, L.; Wong, S. L.; Huang, X.; Liao, W. G.; Zhu, C. X.; Lim, Y. F.; Li, D. B.; Liu, X. K.; Chi, D. Z. et al. Electronic devices and circuits based on wafer-scale polycrystalline monolayer MoS2 by chemical vapor deposition. Adv. Electron. Mater. 2019, 5, 1900393.