PDF (13.9 MB)
Collect
Submit Manuscript
Research Article | Open Access

Low-power consumption anisotropic CMOS inverters based on n-ReS2 and p-WSe2

Ting Fu1Shuai Liu1Baoxin Niu2Wanfu Shen2Chunguang Hu2Ruixuan Peng3Kai Liu3Chengbao Jiang1Shengxue Yang1()
School of Materials Science and Engineering, Beihang University, Beijing 102206, China
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

View original image Download original image
We report anisotropic complementary metal-oxide-semiconductor (CMOS) inverters based on anisotropic n-ReS2 and isotropic p-WSe2. The inverters realize the integration of different voltage transfer characteristics within a single device, combining the benefits of low-power consumption with the potential for high-density integration.

Abstract

The surge in data volume and algorithmic complexity necessitates the development of highly integrated, low-power, and high-performance electronic components. Conventional complementary metal-oxide-semiconductor (CMOS) inverters, which rely solely on isotropic two-dimensional materials, encounter limitations due to their single voltage output, thereby impeding the miniaturization of integrated circuits. In this study, we introduce anisotropic CMOS inverters based on n-ReS2 and p-WSe2, which demonstrate distinct voltage transfer characteristics across various crystalline orientations. These inverters exhibit the lowest voltage gain along the a-axis of ReS2 flakes, whereas they possess the highest voltage gain and the lowest static power consumption along the b-axis. By optimizing the gate dielectric on substrates, the inverter achieves an enhanced voltage gain of 30.8 and an ultra-low power consumption of 5.4 pW along the b-axis direction, when fabricated on a 35 nm Al2O3 substrate deposited via atomic layer deposition (ALD) method. Additionally, it captures a clear dynamic switching behavior at a supply voltage of 3 V under a 20 Hz square wave input signal. This study proposes a potential approach to circuit miniaturization by leveraging anisotropic two-dimensional materials for the integration of diverse voltage transfer characteristics within a single logic device, thereby achieving a combination of low power consumption and high-density integration.

Electronic Supplementary Material

Download File(s)
7231_ESM.pdf (894 KB)

References

[1]
Basu, A.; Deng, L.; Frenkel, C.; Zhang, X. Y. Spiking neural network integrated circuits: A review of trends and future directions. In Proceedings of IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, USA, 2022, pp 1–8.
[2]

Ieong, M.; Doris, B.; Kedzierski, J.; Rim, K.; Yang, M. Silicon device scaling to the sub-10-nm regime. Science 2004, 306, 2057–2060.

[3]

Shen, Y.; Dong, Z. Y.; Sun, Y. B.; Guo, H.; Wu, F.; Li, X. L.; Tang, J.; Liu, J.; Wu, X.; Tian, H. et al. The trend of 2D transistors toward integrated circuits: Scaling down and new mechanisms. Adv. Mater. 2022, 34, 2201916.

[4]

Tang, J.; Wang, Q. Q.; Tian, J. P.; Li, X. M.; Li, N.; Peng, Y. L.; Li, X. Z.; Zhao, Y. C.; He, C. L.; Wu, S. Y. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 2023, 14, 3633.

[5]

Yan, Y. K.; Zhao, Y.; Liu, Y. Q. Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 2022, 60, 311–327.

[6]

Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.

[7]

Schulz, M. The end of the road for silicon. Nature 1999, 399, 729–730.

[8]

Wang, S. Y.; Liu, X. X.; Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 2022, 34, 2106886.

[9]

Zhou, J. S.; Xin, K. Y.; Zhao, X. K.; Li, D. M.; Wei, Z. M.; Xia, J. B. Recent progress in optoelectronic applications of hybrid 2D/3D silicon-based heterostructures. Sci. China Mater. 2022, 65, 876–895.

[10]

Cheng, L.; Liu, Y. Y. What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides. J. Am. Chem. Soc. 2018, 140, 17895–17900.

[11]

Jiang, S. J.; Li, J. Y.; Chen, W. Z.; Yin, H. B.; Zheng, G. P.; Wang, Y. X. InTeI: A novel wide-bandgap 2D material with desirable stability and highly anisotropic carrier mobility. Nanoscale 2020, 12, 5888–5897.

[12]

Liu, H. W.; Fang, L. Z.; Zhu, X. L.; Zhu, C. G.; Sun, X. X.; Xu, G. Z.; Zheng, B. Y.; Liu, Y.; Luo, Z. Y.; Wang, H. et al. Epitaxial van der Waals contacts for low schottky barrier MoS2 field effect transistors. Nano Res. 2023, 16, 11832–11838.

[13]

Xu, S. H.; Huang, Z.; Guan, J.; Hu, Y. W. Nanoforming of transferred metal contacts for enhanced two-dimensional field effect transistors. Nano Res. 2024, 17, 3210–3216.

[14]

Elahi, E.; Suleman, M.; Nisar, S.; Sharma, P. R.; Iqbal, M. W.; Patil, S. A.; Kim, H.; Abbas, S.; Chavan, V. D.; Dastgeer, G. et al. Robust approach towards wearable power efficient transistors with low subthreshold swing. Mater. Today Phys. 2023, 30, 100943.

[15]

Hu, J. Y.; Li, H. X.; Chen, A. Z.; Zhang, Y. S.; Wang, H. L.; Fu, Y.; Zhou, X.; Loh, K. P.; Kang, Y.; Chai, J. et al. All-2D-materials subthreshold-free field-effect transistor with near-ideal switching slope. ACS Nano 2024, 18, 20236–20246.

[16]

Vu, Q. A.; Fan, S. D.; Lee, S. H.; Joo, M. K.; Yu, W. J.; Lee, Y. H. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 2018, 5, 031001.

[17]

Wang, Y.; Bai, X. Y.; Chu, J. W.; Wang, H. B.; Rao, G. F.; Pan, X. Q.; Du, X. C.; Hu, K.; Wang, X. P.; Gong, C. H. et al. Record-low subthreshold-swing negative-capacitance 2D field-effect transistors. Adv. Mater. 2020, 32, 2005353.

[18]

Cao, W.; Kang, J. H.; Liu, W.; Banerjee, K. A compact current-voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Devices 2014, 61, 4282–4290.

[19]

Miller, E. J.; Dang, X. Z.; Yu, E. T. Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors. J. Appl. Phys. 2000, 88, 5951–5958.

[20]

Su, S. K.; Chuu, C. P.; Li, M. Y.; Cheng, C. C.; Wong, H. S. P.; Li, L. J. Layered semiconducting 2D materials for future transistor applications. Small Struct. 2021, 2, 2000103.

[21]

Li, M. M.; Zhang, X. Y.; Zhang, Z. M.; Peng, G.; Zhu, Z. H.; Li, J.; Qin, S. Q.; Zhu, M. J. Unipolar p-type monolayer WSe2 field-effect transistors with high current density and low contact resistance enabled by van der Waals contacts. Nano Res. 2024, 17, 10162–10169.

[22]

Chiu, M. H.; Tang, H. L.; Tseng, C. C.; Han, Y. M.; Aljarb, A.; Huang, J. K.; Wan, Y.; Fu, J. H.; Zhang, X. X.; Chang, W. H. et al. Metal-guided selective growth of 2D materials: Demonstration of a bottom-up CMOS inverter. Adv. Mater. 2019, 31, 1900861.

[23]

Li, Y. H.; Yu, J. R.; Wei, Y. C.; Wang, Y. F.; Cheng, L. Q.; Feng, Z. Y.; Yang, Y.; Wang, Z. L.; Sun, Q. J. Ambipolar tribotronic transistor of MoTe2. Nano Res. 2023, 16, 11907–11913.

[24]

Pezeshki, A.; Hosseini Shokouh, S. H.; Jeon, P. J.; Shackery, I.; Kim, J. S.; Oh, I. K.; Jun, S. C.; Kim, H.; Im, S. Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano 2016, 10, 1118–1125.

[25]

Su, Y.; Kshirsagar, C. U.; Robbins, M. C.; Haratipour, N.; Koester, S. J. Symmetric complementary logic inverter using integrated black phosphorus and MoS2 transistors. 2D Mater. 2016, 3, 011006.

[26]

Wang, J. L.; Guo, X. Y.; Yu, Z. H.; Ma, Z. C.; Liu, Y. H.; Lin, Z. Y.; Chan, M.; Zhu, Y.; Wang, X. R.; Chai, Y. Low-power complementary inverter with negative capacitance 2D semiconductor transistors. Adv. Funct. Mater. 2020, 30, 2003859.

[27]

Kong, L. G.; Chen, Y.; Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 2021, 14, 1768–1783.

[28]
Wang, H.; Yu, L.; Lee, Y. H.; Fang, W.; Hsu, A.; Herring, P.; Chin, M.; Dubey, M.; Li, L. J.; Kong, J. et al. Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition. In Proceedings of International Electron Devices Meeting (IEDM), San Francisco, USA, 2012, pp 4.6.1–4.6.4.
[29]

Xu, H.; Zhang, H. M.; Guo, Z. X.; Shan, Y. W.; Wu, S. W.; Wang, J. L.; Hu, W. D.; Liu, H. Q.; Sun, Z. Z.; Luo, C. et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, 1803465.

[30]

Yu, L. L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y. X.; Dubey, M.; Kaxiras, E.; Kong, J.; Wang, H. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055–3063.

[31]

Dathbun, A.; Kim, Y.; Kim, S.; Yoo, Y.; Kang, M. S.; Lee, C.; Cho, J. H. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 2017, 17, 2999–3005.

[32]

Waltl, M.; Knobloch, T.; Tselios, K.; Filipovic, L.; Stampfer, B.; Hernandez, Y.; Waldhör, D.; Illarionov, Y.; Kaczer, B.; Grasser, T. Perspective of 2D integrated electronic circuits: Scientific pipe dream or disruptive technology. Adv. Mater. 2022, 34, 2201082.

[33]

Jeon, P. J.; Kim, J. S.; Lim, J. Y.; Cho, Y.; Pezeshki, A.; Lee, H. S.; Yu, S.; Min, S. W.; Im, S. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 2015, 7, 22333–22340.

[34]

Zou, T. Y.; Kim, H. J.; Kim, S.; Liu, A.; Choi, M. Y.; Jung, H.; Zhu, H. H.; You, I.; Reo, Y.; Lee, W. J. et al. High-performance solution-processed 2D p-type WSe2 transistors and circuits through molecular doping. Adv. Mater. 2023, 35, 2208934.

[35]

Du, W. Y.; Jia, X. H.; Cheng, Z. X.; Xu, W. J.; Li, Y. P.; Dai, L. Low-power-consumption CMOS inverter array based on CVD-grown p-MoTe2 and n-MoS2. iScience 2021, 24, 103491.

[36]

Lee, H. S.; Choi, K.; Kim, J. S.; Yu, S.; Ko, K. R.; Im, S. Coupling two-dimensional MoTe2 and InGaZnO thin-film materials for hybrid PN junction and CMOS inverters. ACS Appl. Mater. Interfaces 2017, 9, 15592–15598.

[37]

Lim, J. Y.; Pezeshki, A.; Oh, S.; Kim, J. S.; Lee, Y. T.; Yu, S.; Hwang, D. K.; Lee, G. H.; Choi, H. J.; Im, S. Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv. Mater. 2017, 29, 1701798.

[38]

Choi, Y.; Kim, K.; Lim, S. Y.; Kim, J.; Park, J. M.; Kim, J. H.; Lee, Z.; Cheong, H. Complete determination of the crystallographic orientation of ReX2 (X = S, Se) by polarized Raman spectroscopy. Nanoscale Horiz. 2020, 5, 308–315.

[39]

Chen, Y. J.; Wang, Z. J.; Du, J. T.; Si, C.; Jiang, C. B.; Yang, S. X. Wrinkled rhenium disulfide for anisotropic nonvolatile memory and multiple artificial neuromorphic synapses. ACS Nano 2024, 18, 30871–30883.

[40]

Shen, W. F.; Hu, C. G.; Tao, J.; Liu, J.; Fan, S. Q.; Wei, Y. X.; An, C. H.; Chen, J. C.; Wu, S.; Li, Y. N. Resolving the optical anisotropy of low-symmetry 2D materials. Nanoscale 2018, 10, 8329–8337.

[41]

Zhong, M. Z.; Meng, H. T.; Liu, S. J.; Yang, H.; Shen, W. F.; Hu, C. G.; Yang, J. H.; Ren, Z. H.; Li, B.; Liu, Y. Y. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 2021, 15, 1701–1709.

[42]

Yang, Y. S.; Liu, S. C.; Wang, Y.; Long, M. S.; Dai, C. M.; Chen, S. Y.; Zhang, B.; Sun, Z.; Sun, Z. Y.; Hu, C. G. et al. In-plane optical anisotropy of low-symmetry 2D GeSe. Adv. Opt. Mater. 2019, 7, 1801311.

[43]

Yang, S. X.; Yang, Y. H.; Wu, M. H.; Hu, C. G.; Shen, W. F.; Gong, Y. J.; Huang, L.; Jiang, C. B.; Zhang, Y. Z.; Ajayan, P. M. Highly in-plane optical and electrical anisotropy of 2D germanium arsenide. Adv. Funct. Mater. 2018, 28, 1707379.

[44]

Chen, Y. J.; Wang, Y. K.; Shen, W. F.; Wu, M. H.; Li, B.; Zhang, Q.; Liu, S.; Hu, C. G.; Yang, S. X.; Gao, Y. N. et al. Strain and interference synergistically modulated optical and electrical properties in ReS2/graphene heterojunction bubbles. ACS Nano 2022, 16, 16271–16280.

[45]

Chenet, D. A.; Aslan, B.; Huang, P. Y.; Fan, C.; Van Der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

[46]

Liu, H.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit. Nano Res. 2020, 13, 1644–1650.

[47]

Salimian, S.; Xiang, S. H.; Colonna, S.; Ronci, F.; Fosca, M.; Rossella, F.; Beltram, F.; Flammini, R.; Heun, S. Morphology and magneto-transport in exfoliated graphene on ultrathin crystalline β-Si3N4(0001)/Si(111). Adv. Mater. Interfaces 2020, 7, 1902175.

[48]

Wang, L.; Chen, L.; Wong, S. L.; Huang, X.; Liao, W. G.; Zhu, C. X.; Lim, Y. F.; Li, D. B.; Liu, X. K.; Chi, D. Z. et al. Electronic devices and circuits based on wafer-scale polycrystalline monolayer MoS2 by chemical vapor deposition. Adv. Electron. Mater. 2019, 5, 1900393.

Nano Research
Article number: 94907231
Cite this article:
Fu T, Liu S, Niu B, et al. Low-power consumption anisotropic CMOS inverters based on n-ReS2 and p-WSe2. Nano Research, 2025, 18(3): 94907231. https://doi.org/10.26599/NR.2025.94907231
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return