Urea, a critical nitrogen-based feedstock predominantly employed in fertilizer production, can be synthesized via electrocatalytic C-N coupling, which provides an efficient route for efficient nitrogen and carbon fixation under mild conditions. Nonetheless, electrocatalytic urea synthesis is hindered by intricate intermediate pathways and competing side reactions, leading to low urea selectivity and yield. Therefore, improving the efficiency of electrocatalytic urea synthesis requires efficient catalysts. This review presents an overview of urea detection methodologies, elucidates the C-N coupling mechanisms, and explores catalyst design strategies. Accurate detection of urea detection is particularly vital in low-yield systems; thus, we analyze the advantages and limitations of several detection techniques. Additionally, we investigate the fundamental reaction mechanisms that allow reduction of CO2 and various nitrogen species to be reduced simultaneously. A detailed examination of catalyst design strategies aimed at improving electrocatalytic urea production, including heterostructure, atomically dispersed structures, and vacancy engineering, is provided. Finally, we address the emerging challenges that must be tackled as the technology progresses.
Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.
Fu, S. Y.; Chu, K. B.; Guo, M. H.; Wu, Z. Z.; Wang, Y.; Yang, J. R.; Lai, F. L.; Liu, T. X. Ultrasonic-assisted hydrothermal synthesis of RhCu alloy nanospheres for electrocatalytic urea production. Chem. Commun. 2023, 59, 4344–4347.
Lv, C. D.; Liu, J. W.; Lee, C.; Zhu, Q.; Xu, J. W.; Pan, H. G.; Xue, C.; Yan, Q. Y. Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 2022, 16, 15512–15527.
Lim, J.; Fernández, C. A.; Lee, S. W.; Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 2021, 6, 3676–3685.
Mukherjee, J.; Paul, S.; Adalder, A.; Kapse, S.; Thapa, R.; Mandal, S.; Ghorai, B.; Sarkar, S.; Ghorai, U. K. Understanding the site-selective electrocatalytic co-reduction mechanism for green urea synthesis using copper phthalocyanine nanotubes. Adv. Funct. Mater. 2022, 32, 2200882.
Lv, Z. J.; Wei, J. N.; Zhang, W. X.; Chen, P.; Deng, D. H.; Shi, Z. J.; Xi, Z. F. Direct transformation of dinitrogen: Synthesis of N-containing organic compounds via N−C bond formation. Natl. Sci. Rev. 2020, 7, 1564–1583.
Lanigan, R. M.; Sheppard, T. D. Recent developments in amide synthesis: Direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem. 2013, 2013, 7453–7465.
Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides, M. An electrochemical Haber–Bosch process. Joule 2020, 4, 142–158.
Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Electrocatalytic reduction of nitrogen: From Haber–Bosch to ammonia artificial leaf. Chem 2019, 5, 263–283.
Fu, X. B.; Pedersen, J. B.; Zhou, Y. Y.; Saccoccio, M.; Li, S. F.; Sažinas, R.; Li, K.; Andersen, S. Z.; Xu, A. N.; Deissler, N. H. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 2023, 379, 707–712.
Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.
Zhu, X. R.; Zhou, X. C.; Jing, Y.; Li, Y. F. Electrochemical synthesis of urea on MBenes. Nat. Commun. 2021, 12, 4080.
Kim, J. E.; Choi, S. W.; Balamurugan, M.; Jang, J. H.; Nam, K. T. Electrochemical C–N bond formation for sustainable amine synthesis. Trends Chem. 2020, 2, 1004–1019.
Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem., Int. Ed. 2024, 63, e202402684.
Cheng, M. Y.; Wang, S.; Dai, Z. C.; Xia, J.; Zhang, B. C.; Feng, P. Y.; Zhu, Y.; Zhang, Y. Y.; Zhang, G. Q. Rectifying heterointerface facilitated C–N coupling dynamics enables efficient urea electrosynthesis under ultralow potentials. Angew. Chem., Int. Ed. 2025, 64, e202413534.
Huang, X. M.; Li, Y. F.; Xie, S. J.; Zhao, Q.; Zhang, B. Y.; Zhang, Z. Y.; Sheng, H.; Zhao, J. C. The Tandem nitrate and CO2 reduction for urea electrosynthesis: Role of surface N-intermediates in CO2 capture and activation. Angew. Chem., Int. Ed. 2024, 63, e202403980.
Xiang, J. Q.; Qiang, C. F.; Shang, S. Y.; Guo, Y. L.; Chu, K. Relay catalysis of isolated rhodium-alloyed copper boosts urea electrosynthesis from nitrate and CO2. ACS Nano 2024, 18, 29856–29863.
Tao, Z. X.; Rooney, C. L.; Liang, Y. Y.; Wang, H. L. Accessing organonitrogen compounds via C−N coupling in electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2021, 143, 19630–19642.
Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard, W. A.; Jiao, F. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 2019, 11, 846–851.
Xia, M. K.; Mao, C. L.; Gu, A. L.; Tountas, A. A.; Qiu, C. Y.; Wood, T. E.; Li, Y. F.; Ulmer, U.; Xu, Y. F.; Viasus, C. J. et al. Solar urea: Towards a sustainable fertilizer industry. Angew. Chem., Int. Ed. 2022, 61, e202110158.
Li, D.; Zhao, Y. X.; Miao, Y. X.; Zhou, C.; Zhang, L. P.; Wu, L. Z.; Zhang, T. R. Accelerating electron-transfer dynamics by TiO2-immobilized reversible single-atom copper for enhanced artificial photosynthesis of urea. Adv. Mater. 2022, 34, 2207793.
Hao, J. C.; Zhu, H.; Li, Y. Z.; Liu, P. X.; Lu, S. L.; Duan, F.; Dong, W. F.; Lu, Y. Y.; Liu, T. X.; Du, M. L. Tuning the electronic structure of AuNi homogeneous solid–solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction. Chem Eng. J. 2021, 404, 126523.
Lv, L. Y.; Tan, H.; Kong, Y.; Tang, B.; Ji, Q. Q.; Liu, Y. Y.; Wang, C.; Zhuang, Z. C.; Wang, H. J.; Ge, M. et al. Breaking the scaling relationship in C−N coupling via the doping effects for efficient urea electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202401943.
Centi, G.; Perathoner, S. Making chemicals from the air: The new frontier for hybrid electrosyntheses in artificial tree-like devices. Green Chem. 2024, 26, 15–41.
Hao, J. C.; Wang, T. D.; Yu, R. H.; Cai, J.; Gao, G. H.; Zhuang, Z. C.; Kang, Q.; Lu, S. L.; Liu, Z. H.; Wu, J. S. et al. Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem. Nat. Commun. 2024, 15, 9020.
Amirbeigiarab, R.; Tian, J.; Herzog, A.; Qiu, C. R.; Bergmann, A.; Roldan Cuenya, B.; Magnussen, O. M. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat. Catal. 2023, 6, 837–846.
Suryanto, B. H. R.; Matuszek, K.; Choi, J.; Hodgetts, R. Y.; Du, H. L.; Bakker, J. M.; Kang, C. S. M.; Cherepanov, P. V.; Simonov, A. N.; MacFarlane, D. R. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 2021, 372, 1187–1191.
Shin, S.; Sultan, S.; Chen, Z. X.; Lee, H.; Choi, H.; Wi, T. U.; Park, C.; Kim, T.; Lee, C.; Jeong, J. et al. Copper with an atomic-scale spacing for efficient electrocatalytic co-reduction of carbon dioxide and nitrate to urea. Energy Environ. Sci. 2023, 16, 2003–2013.
Gerke, C. S.; Xu, Y. T.; Yang, Y. W.; Foley, G. D.; Zhang, B.; Shi, E.; Bedford, N. M.; Che, F. L.; Thoi, V. S. Electrochemical C–N bond formation within boron imidazolate cages featuring single copper sites. J. Am. Chem. Soc. 2023, 145, 26144–26151.
Zhao, Y. X.; Shi, R.; Bian, X. N.; Zhou, C.; Zhao, Y. F.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates. Adv. Sci. 2019, 6, 1802109.
Zhao, Y. X.; Wu, F.; Miao, Y. X.; Zhou, C.; Xu, N.; Shi, R.; Wu, L. Z.; Tang, J. W.; Zhang, T. R. Revealing ammonia quantification minefield in photo/electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21728–21731.
Chen, C.; Zhu, X. R.; Wen, X. J.; Zhou, Y. Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q. L.; Du, S. Q.; Liu, T. T. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.
Rahmatullah, M.; Boyde, T. R. C. Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clin. Chim. Acta 1980, 107, 3–9.
Chen, S. B.; Lin, S. T.; Ding, L. X.; Wang, H. H. Modified diacetylmonoxime-thiosemicarbazide detection protocol for accurate quantification of urea. Small Methods 2023, 7, 2300003.
Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A surface-strained and geometry-tailored nanoreactor that promotes ammonia electrosynthesis. Angew. Chem., Int. Ed. 2020, 59, 22610–22616.
Huang, Y. M.; Yang, R.; Wang, C. H.; Meng, N. N.; Shi, Y. M.; Yu, Y. F.; Zhang, B. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 2022, 7, 284–291.
Li, D.; Xu, N.; Zhao, Y. X.; Zhou, C.; Zhang, L. P.; Wu, L. Z.; Zhang, T. R. A reliable and precise protocol for urea quantification in photo/electrocatalysis. Small Methods 2022, 6, 2200561.
Huang, Y. M.; Wang, Y. T.; Wu, Y. M.; Yu, Y. F.; Zhang, B. Electrocatalytic construction of the C–N bond from the derivates of CO2 and N2. Sci. China Chem. 2022, 65, 204–206.
Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.
Zhang, W. Q.; Low, J.; Long, R.; Xiong, Y. J. Metal-free electrocatalysts for nitrogen reduction reaction. EnergyChem 2020, 2, 100040.
Wen, Y. K.; Zhang, W. C.; Wang, X. F.; Lu, S. L.; Duan, F.; Zhu, H.; Du, M. L. Dual-phase B-doped FeCoNiCuPd high-entropy alloys for nitrogen electroreduction to ammonia. Chem. Commun. 2023, 59, 13371–13374.
Yu, Y. D.; Lv, Z.; Liu, Z. Y.; Sun, Y. Y.; Wei, Y. Y.; Ji, X.; Li, Y. Y.; Li, H. D.; Wang, L.; Lai, J. P. Activation of Ga liquid catalyst with continuously exposed active sites for electrocatalytic C−N coupling. Angew. Chem., Int. Ed. 2024, 63, e202402236.
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, 9120010.
Hao, D.; Liu, Y.; Gao, S. Y.; Arandiyan, H.; Bai, X. J.; Kong, Q.; Wei, W.; Shen, P. K.; Ni, B. J. Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. Mater. Today 2021, 46, 212–233.
Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388.
Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.
Wei, X. X.; Wen, X. J.; Liu, Y. Y.; Chen, C.; Xie, C.; Wang, D. D.; Qiu, M. Y.; He, N. H.; Zhou, P.; Chen, W. et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 2022, 144, 11530–11535.
Shibata, M.; Yoshida, K.; Furuya, N. Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. J. Electroanal. Chem. 1995, 387, 143–145.
Shibata, M.; Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes: Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts. J. Electroanal. Chem. 2001, 507, 177–184.
Wang, H.; Jiang, Y.; Li, S. J.; Gou, F. L.; Liu, X. R.; Jiang, Y. M.; Luo, W.; Shen, W.; He, R. X.; Li, M. Realizing efficient C–N coupling via electrochemical co-reduction of CO2 and NO3− on AuPd nanoalloy to form urea: Key C–N coupling intermediates. Appl. Catal. B: Environ. 2022, 318, 121819.
Lv, C. D.; Zhong, L. X.; Liu, H. J.; Fang, Z. W.; Yan, C. S.; Chen, M. X.; Kong, Y.; Lee, C.; Liu, D. B.; Li, S. Z. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868–876.
Xia, Y. J.; Wang, L.; Gao, G. Y.; Mao, T. L.; Wang, Z. J.; Jin, X. F.; Hong, Z. Y.; Han, J. J.; Peng, D. L.; Yue, G. H. Constructed Mott–Schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li–O2 battery. Nano Micro Lett. 2024, 16, 258.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.
Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.
Choi, C.; Kwon, S.; Cheng, T.; Xu, M. J.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X. Q.; Duan, X. F. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812.
Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.
Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.
Zhu, H.; Hu, J. W.; Zhang, Z. L.; Zhuang, Z. C.; Hao, J. C.; Duan, F.; Lu, S. L.; Wang, X. F.; Du, M. L. Lewis acid sites incorporation promotes CO2 electroreduction to multicarbon oxygenates over B–CuO nanotubes. Appl. Catal. B: Environ. 2023, 339, 123082.
Chen, S. H.; Zheng, X. B.; Zhu, P.; Li, Y. P.; Zhuang, Z. C.; Wu, H. J.; Zhu, J. X.; Xiao, C. H.; Chen, M. Z.; Wang, P. S. et al. Copper atom pairs stabilize *OCCO dipole toward highly selective CO2 electroreduction to C2H4. Angew. Chem., Int. Ed. 2024, 63, e202411591.
Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.
Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.
Zhao, Y. L.; Ding, Y. X.; Li, W. L.; Liu, C.; Li, Y. Z.; Zhao, Z. Q.; Shan, Y.; Li, F.; Sun, L. C.; Li, F. S. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 2023, 14, 4491.
Luo, Y. T.; Xie, K.; Ou, P. F.; Lavallais, C.; Peng, T.; Chen, Z.; Zhang, Z. Y.; Wang, N.; Li, X. Y.; Grigioni, I. et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nat. Catal. 2023, 6, 939–948.
Qiu, M. Y.; Zhu, X. R.; Bo, S. W.; Cheng, K.; He, N. H.; Gu, K. Z.; Song, D. Z.; Chen, C.; Wei, X. X.; Wang, D. D. et al. Boosting electrocatalytic urea production via promoting asymmetric C–N coupling. CCS Chem. 2023, 5, 2617–2627.
Zhao, J. M.; Yuan, Y.; Zhao, F.; Han, W.; Yuan, Q.; Kou, M. M.; Zhao, J. S.; Chen, C.; Wang, S. Y. Identifying the facet-dependent active sites of Cu2O for selective C–N coupling toward electrocatalytic urea synthesis. Appl. Catal. B: Environ. 2024, 340, 123265.
Cai, J.; Hao, J. C.; Lu, S. L.; Duan, F.; Du, M. L.; Zhu, H. An electrospinning strategy to fabricate an integrated electrode with multiple components for highly efficient electrocatalytic water splitting. New J. Chem. 2023, 47, 19842–19845.
Zheng, X.; Hao, J. C.; Zhuang, Z. C.; Kang, Q.; Wang, X. F.; Lu, S. L.; Duan, F.; Du, M. L.; Zhu, H. Emerging electrospinning platform toward nanoparticle to single atom transformation for steering selectivity in ammonia synthesis. Nanoscale 2024, 16, 4047–4055.
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.
Verma, T. S.; Hassan Dar, A.; Dar, M. A.; Selvaraj, K.; Krishnamurty, S. Computational identification of most potent atom pair catalysts for electrocatalytic nitrogen reduction reaction over hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 58, 1345–1358.
Wen, Y. K.; Wang, T. D.; Hao, J. C.; Zhuang, Z. C.; Gao, G. H.; Lai, F. L.; Lu, S. L.; Wang, X. F.; Kang, Q.; Wu, G. M. et al. A coherent Pd–Pd16B3 core–shell electrocatalyst for controlled hydrogenation in nitrogen reduction reaction. Adv. Funct. Mater. 2024, 34, 2400849.
Hao, J. C.; Zhu, H.; Zhao, Q.; Hao, J. C.; Lu, S. L.; Wang, X. F.; Duan, F.; Du, M. L. Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site. Nano Res. 2023, 16, 8863–8870.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.
Zhang, M. Y.; Zhou, D. Y.; Mu, X. Q.; Wang, D. S.; Liu, S. L.; Dai, Z. H. Regulating the critical intermediates of dual-atom catalysts for CO2 electroreduction. Small 2024, 20, 2402050.
Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 62, e202316550.
Wan, H.; Wang, X. L.; Tan, L.; Filippi, M.; Strasser, P.; Rossmeisl, J.; Bagger, A. Electrochemical synthesis of urea: Co-reduction of nitric oxide and carbon monoxide. ACS Catal. 2023, 13, 1926–1933.
Yang, G. L.; Hsieh, C. T.; Ho, Y. S.; Kuo, T. C.; Kwon, Y.; Lu, Q.; Cheng, M. J. Gaseous CO2 coupling with N-containing intermediates for key C–N bond formation during urea production from coelectrolysis over Cu. ACS Catal. 2022, 12, 11494–11504.
Leverett, J.; Tran-Phu, T.; Yuwono, J. A.; Kumar, P.; Kim, C.; Zhai, Q. F.; Han, C.; Qu, J. T.; Cairney, J. L.; Simonov, A. N. et al. Tuning the coordination structure of Cu–N–C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3− to urea. Adv. Energy Mater. 2022, 12, 2201500.
Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.
Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.
Gao, Y. H.; Wang, J. N.; Sun, M. L.; Jing, Y.; Chen, L. L.; Liang, Z. Q.; Yang, Y. J.; Zhang, C.; Yao, J. N.; Wang, X. Tandem catalysts enabling efficient C−N coupling toward the electrosynthesis of urea. Angew. Chem., Int. Ed. 2024, 63, e202402215.
Liu, C. C.; Tong, H. L.; Wang, P. F.; Huang, R.; Huang, P. L.; Zhou, G.; Liu, L. Z. The asymmetric orbital hybridization in single-atom-dimers for urea synthesis by optimizing the C−N coupling reaction pathway. Appl. Catal. B: Environ. 2023, 336, 122917.
Lv, C. D.; Lee, C.; Zhong, L. X.; Liu, H. J.; Liu, J. W.; Yang, L.; Yan, C. S.; Yu, W.; Hng, H. H.; Qi, Z. M. et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano 2022, 16, 8213–8222.
Liu, H.; Li, J. J.; Arbiol, J.; Yang, B.; Tang, P. Y. Catalytic reactivity descriptors of metal-nitrogen-doped carbon catalysts for electrocatalysis. EcoEnergy 2023, 1, 154–185.
Shi, Y. J.; Zhou, Y. W.; Lou, Y.; Chen, Z. P.; Xiong, H. F.; Zhu, Y. F. Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Adv. Sci. 2022, 9, 2201520.
Zhang, X. R.; Zhu, X. R.; Bo, S. W.; Chen, C.; Qiu, M. Y.; Wei, X. X.; He, N. H.; Xie, C.; Chen, W.; Zheng, J. Y. et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 2022, 13, 5337.
Lv, Z.; Zhao, L.; Zhou, S. L.; Wang, M. N.; Xu, W. X.; Lai, J. P.; Wang, L. CuCo DAC used to change the hydrogenation sequence for efficient electrochemical C–N coupling. Appl. Catal. B: Environ. Energy 2024, 351, 124003.
Qu, J. S.; Liu, W.; Liu, R. Z.; He, J. D.; Liu, D. D.; Feng, Z. C.; Feng, Z. D.; Li, R. G.; Li. C. Evolution of oxygen vacancies in cerium dioxide at atomic scale under CO2 reduction. Chem Catal. 2023, 3, 100759.
Zhang, H. Y.; Wu, L. L.; Feng, R. H.; Wang, S. H.; Hsu, C. S.; Ni, Y. M.; Ahmad, A.; Zhang, C. R.; Wu, H. F.; Chen, H. M. et al. Oxygen vacancies unfold the catalytic potential of NiFe-layered double hydroxides by promoting their electronic transport for oxygen evolution reaction. ACS Catal. 2023, 13, 6000–6012.
Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S. S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.
Wang, X. W.; Hou, L. F.; Huang, W.; Ren, X. B.; Ji, W.; Jin, C. H. Mass transport induced structural evolution and healing of sulfur vacancy lines and Mo chain in monolayer MoS2. Rare Met. 2022, 41, 333–341.
Xia, J. K.; Xu, J. W.; Yu, B.; Liang, X.; Qiu, Z.; Li, H.; Feng, H. J.; Li, Y. F.; Cai, Y. J.; Wei, H. Y. et al. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase. Angew. Chem., Int. Ed. 2024, 63, e202412740.
Ma, Y. F.; Lai, J. W.; Wu, J. Y.; Lin, X. Q.; Yu, H.; Zhang, H.; Wu, A. J.; Long, J. S.; Li, X. D. Novel development of VO x -CeO x -WO x /TiO2 catalyst for low-temperature catalytic oxidation of chloroaromatic organics. Waste Dispos. Sustain. Energy 2022, 4, 259–269.
Zhao, H. Y.; Wang, S.; Zhu, H. Y.; Zhang, X. X.; Shang, D. H.; Zhou, X. W.; Wang, J.; Zhu, C. Z.; Du, F.; Song, Y. Y. et al. Modulating nanograin size and oxygen vacancy of porous ZnO nanosheets by highly concentrated Fe-doping effect for durable visible photocatalytic disinfection. Rare Met. 2024, 43, 5905–5920.
Meng, N. N.; Huang, Y. M.; Liu, Y.; Yu, Y. F.; Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2021, 2, 100378.
Li, Y.; Zheng, S. S.; Liu, H.; Xiong, Q.; Yi, H. C.; Yang, H. B.; Mei, Z. W.; Zhao, Q. H.; Yin, Z. W.; Huang, M. et al. Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis. Nat. Commun. 2024, 15, 176.
Jiao, Y. R.; Li, H. B.; Jiao, Y.; Qiao, S. Z. Activity and selectivity roadmap for C–N electro-coupling on MXenes. J. Am. Chem. Soc. 2023, 145, 15572–15580.
Steinmann, S. N.; Wang, Q.; Seh, Z. W. How machine learning can accelerate electrocatalysis discovery and optimization. Mater. Horiz. 2023, 10, 393–406.
Huang, Y. M.; Wang, Y. T.; Liu, Y.; Ma, A. J.; Gui, J. Z.; Zhang, C. X.; Yu, Y. F.; Zhang, B. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chem. Eng. J. 2023, 453, 139836.
Wang, Y.; Xia, S.; Zhang, J. F.; Li, Z. Y.; Cai, R.; Yu, C. P.; Zhang, Y.; Wu, J. J.; Wu, Y. C. Spatial management of CO diffusion on tandem electrode promotes NH2 intermediate formation for efficient urea electrosynthesis. ACS Energy Lett. 2023, 8, 3373–3380.