Molecular catalysts with well-defined single atom sites and coordination environments exhibit significant potential as oxygen reduction electrocatalysts, but suffering from the activity and stability issues. Herein, the ultrathin carbon shell supported FePc molecule electrocatalysts (FePc/TA-ONG-N), featuring with a direct oxygen bridging between FePc and carbon substrate, were designed and synthesized. The direct connection with oxygen atom on carbon substrate, certified by the Fourier transform infrared spectroscopy (FTIR) and extended X-ray absorption fine structure (EXAFS), can remarkably enhance the interaction and facilitate electron transfer from Fe, leading to an improved activity by reducing adsorption strength of intermediate species through lowering the d-band center position. The resultant half-wave potential of 0.902 V together with a Tafel slope of 23.64 mV·dec−1 is superior to Pt/C and control samples. Such catalyst holds a promise as air-cathode electrocatalyst in Zn-air battery with excellent operation stability exceeding 80 h. The density functional theory (DFT) calculations and molecular dynamic simulations unveiled that the O-bridge can effectively stabilize the FePc molecule and function as electron buffer to donate/gain electrons to/from Fe atom during the adsorption of oxygenates. The current findings are insightful for developing molecular catalysts with high performance through substrate engineering and axial coordination.
Bai, X.; Wang, Y.; Han, J. Y.; Niu, X. D.; Guan, J. Q. Engineering the electronic structure of isolated manganese sites to improve the oxygen reduction, Zn-air battery and fuel cell performances. Appl. Catal. B: Environ. 2023, 337, 122966.
Chen, S. M.; Liang, X. Y.; Hu, S. X.; Li, X. L.; Zhang, G. B.; Wang, S. Y.; Ma, L. T.; Wu, C. M. L.; Zhi, C. Y.; Zapien, J. A. Inducing Fe 3 d electron delocalization and spin-state transition of FeN4 species boosts oxygen reduction reaction for wearable zinc-air battery. Nano-Micro Lett. 2023, 15, 47.
Wang, X. L.; Li, J. W.; Yang, X. T.; Zhao, F. L.; Li, Y. F.; Zhang, D. L.; Gan, L. Y.; Yao, K. X.; Yuan, Q. Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Res. 2022, 15, 7951–7958.
Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.
Fu, X. G.; Jiang, G. P.; Wen, G. B.; Gao, R.; Li, S.; Li, M.; Zhu, J. B.; Zheng, Y.; Li, Z. Q.; Hu, Y. F. et al. Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Appl. Catal. B: Environ. 2021, 293, 120176.
Shen, M. X.; Liu, J.; Li, J.; Duan, C.; Xiong, C. Y.; Zhao, W.; Dai, L.; Wang, Q. Y.; Yang, H.; Ni, Y. H. Breaking the N-limitation with N-enriched porous submicron carbon spheres anchored Fe single-atom catalyst for superior oxygen reduction reaction and Zn-air batteries. Energy Storage Mater. 2023, 59, 102790.
Lu, F. H.; Fan, K. C.; Cui, L. X.; Li, B.; Yang, Y.; Zong, L. B.; Wang, L. Engineering FeN4 active sites onto nitrogen-rich carbon with tubular channels for enhanced oxygen reduction reaction performance. Appl. Catal. B: Environ. 2022, 313, 121464.
Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.
Lin, Z. N.; Yang, A. Z.; Zhang, B. B.; Liu, B.; Zhu, J. W.; Tang, Y. W.; Qiu, X. Y. Coupling the atomically dispersed Fe-N3 sites with sub-5 nm Pd nanocrystals confined in N-doped carbon nanobelts to boost the oxygen reduction for microbial fuel cells. Adv. Funct. Mater. 2022, 32, 2107683.
Wan, W. C.; Triana, C. A.; Lan, J. G.; Li, J. G.; Allen, C. S.; Zhao, Y. G.; Iannuzzi, M.; Patzke, G. R. Bifunctional single atom electrocatalysts: Coordination-performance correlations and reaction pathways. ACS Nano 2020, 14, 13279–13293.
Zhang, H.; Zhang, Z. K.; Zhang, Z.; Li, Y. F.; Hou, Y.; Liu, P. Z.; Xu, B. S.; Zhang, H. X.; Liu, Y. Z.; Guo, J. J. Highly dispersed ultrasmall iron phthalocyanine molecule clusters confined by mesopore-rich N-doped hollow carbon nanospheres for efficient oxygen reduction reaction and Zn-air battery. Chem. Eng. J. 2023, 469, 143996.
Yu, X. Z.; Lai, S. J.; Xin, S. S.; Chen, S.; Zhang, X. L.; She, X. L.; Zhan, T. R.; Zhao, X. L.; Yang, D. J. Coupling of iron phthalocyanine at carbon defect site via π–π stacking for enhanced oxygen reduction reaction. Appl. Catal. B: Environ. 2021, 280, 119437.
Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.
Mei, Z. Y.; Cai, S.; Zhao, G. F.; Zou, X. X.; Fu, Y.; Jiang, J. W.; An, Q.; Li, M.; Liu, T. T.; Guo, H. Boosting the ORR active and Zn-air battery performance through ameliorating the coordination environment of iron phthalocyanine. Chem. Eng. J. 2022, 430, 132691.
Chen, Z.; Jiang, S.; Kang, G.; Nguyen, D.; Schatz, G. C.; Van Duyne, R. P. Operando characterization of iron phthalocyanine deactivation during oxygen reduction reaction using electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 15684–15692.
Zang, Y.; Mi, C. X.; Wang, R.; Chen, H.; Peng, P.; Xiang, Z. H.; Zang, S. Q.; Mak, T. C. W. Pyrolysis-free synthesized catalyst towards acidic oxygen reduction by deprotonation. Angew. Chem., Int. Ed. 2021, 60, 20865–20871.
Wan, L. Y.; Zhao, K. M.; Wang, Y. C.; Wei, N.; Zhang, P. Y.; Yuan, J. Y.; Zhou, Z. Y.; Sun, S. G. Molecular degradation of iron phthalocyanine during the oxygen reduction reaction in acidic media. ACS Catal. 2022, 12, 11097–11107.
Zhu, S.; Wu, Y. T.; Ding, L. T.; Zhang, X. H.; Li, L.; Wang, X.; Han, G. Y. Heightening polyoxometalate encapsulation efficiency for biaxial strain-induced catalytic activity boosting. Energy Storage Mater. 2024, 73, 103777.
Dong, X. R.; Luo, Y. J.; Tao, S. H.; Liu, J. Y.; Tan, X.; Lu, Z.; Wang, G.; Chen, J. W.; Wang, R. L.; Zhang, J. Donor–acceptor iron phthalocyanine-based hyper-crosslinked polymers with a modulated electronic structure for efficient oxygen reduction reaction in aluminum-air batteries. J. Mater. Chem. A 2024, 12, 13800–13809.
Gao, M.; Liu, J. J.; Ye, G. L.; Zhao, Z. K.; Liu, J. B.; He, G. C.; Gong, Z. C.; Huang, K.; Sun, H. T.; Fei, H. L. Molecular iron phthalocyanine catalysts on morphology-engineered graphene towards the oxygen reduction reaction. Sci. China Mater. 2023, 66, 3865–3874.
Xia, W.; Hou, Z. F.; Tang, J.; Li, J. J.; Chaikittisilp, W.; Kim, Y.; Muraoka, K.; Zhang, H. J.; He, J. P.; Han, B. X. et al. Materials informatics-guided superior electrocatalyst: A case of pyrolysis-free single-atom coordinated with N-graphene nanomesh. Nano Energy 2022, 94, 106868.
Dai, Y. K.; Liu, B.; Zhang, Z. Y.; Guo, P.; Liu, C.; Zhang, Y. L.; Zhao, L.; Wang, Z. B. Tailoring the d-orbital splitting manner of single atomic sites for enhanced oxygen reduction. Adv. Mater. 2023, 35, 2210757.
Li, G. M.; Wang, X.; Zhang, J. L. Carbon dots for promoting the growth of ZIF-8 crystals to obtain fluorescent powders and their application for latent fingerprint imaging. CrystEngComm 2018, 20, 5056–5060.
Lu, Y. B.; Zhang, G. X.; Zhou, H. J.; Cao, S.; Zhang, Y.; Wang, S. L.; Pang, H. Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem., Int. Ed. 2023, 62, e202311075.
Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834.
Xuan, C. J.; Hou, B. S.; Xia, W. W.; Peng, Z. K.; Shen, T.; Xin, H. L.; Zhang, G. A.; Wang, D. L. From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: An efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 10731–10739.
Yan, J.; Zheng, X. J.; Wei, C. H.; Sun, Z. H.; Zeng, K.; Shen, L. W.; Sun, J. W.; Rümmeli, M. H.; Yang, R. Z. Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction. Carbon 2021, 171, 320–328.
Ding, X. B.; Li, F.; Cao, Q. C.; Wu, H.; Qin, Y. H.; Yang, L.; Wang, T. L.; Zheng, X. T.; Wang, C. W. Core–shell S-doped g-C3N4@P123 derived N and S Co-doped carbon as metal-free electrocatalysts highly efficient for oxygen reduction reaction. Chem. Eng. J. 2022, 429, 132469.
Rong, J.; Gao, E. H.; Liu, N. C.; Chen, W. Y.; Rong, X. S.; Zhang, Y. Z.; Zheng, X. D.; Ao, H. S.; Xue, S. L.; Huang, B. et al. Porphyrinic MOF-derived rich N-doped porous carbon with highly active CoN4C single-atom sites for enhanced oxygen reduction reaction and Zn-air batteries performance. Energy Storage Mater. 2023, 56, 165–173.
Hu, S. Y.; Guan, J. P.; Ma, R. Z.; Tao, Y.; Liu, D. H.; Gong, J. X.; Xiong, Y. Single-atom Rh catalysts for efficiently degrading rhodamine B with high concentration. Rare Met. 2024, 43, 2331–2338.
Wang, K.; Lu, Z. J.; Lei, J.; Liu, Z. Y.; Li, Y. Z.; Cao, Y. L. Modulation of ligand fields in a single-atom site by the molten salt strategy for enhanced oxygen bifunctional activity for zinc-air batteries. ACS Nano 2022, 16, 11944–11956.
Liu, L. Z.; Zeng, G.; Chen, J. X.; Bi, L. L.; Dai, L. M.; Wen, Z. H. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 2018, 49, 393–402.
Yang, L. F.; Zhu, Y. Q.; Yao, X. Y.; Du, C. L.; Han, Z. L.; Tian, J. C.; Liu, X.; Ma, X. L.; Cao, C. B. Surface-optimized carbon nanocages with tailorable atomic Fe-N4 sites to boost oxygen reduction in long stable zinc-air battery. Energy Storage Mater. 2023, 63, 102972.
Xie, P. F.; Zhong, H.; Fang, L.; Lyu, Z.; Yu, W. J.; Li, T.; Lee, J.; Shin, H.; Beckman, S. P.; Lin, Y. et al. Molecular Fe-N4 moieties coupled with atomic Co-N4 sites toward improved oxygen reduction performance. Adv. Funct. Mater. 2024, 34, 2314554.
Wei, J.; Xia, D. S.; Wei, Y. P.; Zhu, X. Y.; Li, J.; Gan, L. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe-N-C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 2022, 12, 7811–7820.
Li, L.; Li, N.; Xia, J. W.; Zhou, S. L.; Qian, X. Y.; Yin, F. X.; Dai, G. H.; He, G. Y.; Chen, H. Q. A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries. Nano Res. 2023, 16, 9416–9425.
Li, L.; Li, N.; Xia, J. W.; Zhou, S. L.; Qian, X. Y.; Yin, F. X.; He, G. Y.; Chen, H. Q. Metal-organic framework-derived Co single atoms anchored on N-doped hierarchically porous carbon as a pH-universal ORR electrocatalyst for Zn-air batteries. J. Mater. Chem. A 2023, 11, 2291–2301.
Wang, Q. C.; Feng, Q. G.; Lei, Y. P.; Tang, S. H.; Xu, L.; Xiong, Y.; Fang, G. Z.; Wang, Y. C.; Yang, P. Y.; Liu, J. J. et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 2022, 13, 3689.
Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.
He, X. F.; Chang, L. B.; Wu, H. J.; Liu, G. Y.; Zhang, Y. T.; Zhou, A. N. Design of ZIF-67-derived Fe, N and F Co-doped porous carbon material and evaluation of its ORR and OER performance. J. Alloy. Compd. 2023, 967, 171709.
Meng, Z. H.; Chen, N.; Cai, S. C.; Wu, J. W.; Wang, R.; Tian, T.; Tang, H. L. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2021, 14, 4768–4775.
Wu, X. T.; Peng, L. J.; Xiao, K.; Li, N.; Liu, Z. Q. Rational design and synthesis of hollow Fe-N/C electrocatalysts for enhanced oxygen reduction reaction. Chem. Commun. 2021, 57, 5258–5261.
Zhang, H. W.; Chen, H. C.; Feizpoor, S.; Li, L. F.; Zhang, X.; Xu, X. F.; Zhuang, Z. C.; Li, Z. S.; Hu, W. Y.; Snyders, R. et al. Tailoring oxygen reduction reaction kinetics of Fe-N-C catalyst via spin manipulation for efficient zinc-air batteries. Adv. Mater. 2024, 36, 2400523.
Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.
Arul, A.; Pak, H.; Moon, K. U.; Christy, M.; Oh, M. Y.; Nahm, K. S. Metallomacrocyclic-carbon complex: A study of bifunctional electrocatalytic activity for oxygen reduction and oxygen evolution reactions and their lithium-oxygen battery applications. Appl. Catal. B: Environ. 2018, 220, 488–496.
Guo, J.; Yan, X. M.; Liu, Q.; Li, Q.; Xu, X.; Kang, L. T.; Cao, Z. M.; Chai, G. L.; Chen, J.; Wang, Y. B. et al. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347–355.
Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Chen, Y. B.; Ma, N. N.; Zhou, W.; Shao, Z. P. A surface-modified antiperovskite as an electrocatalyst for water oxidation. Nat. Commun. 2018, 9, 2326.
Wang, Q. Q.; Long, G. F.; Gao, X. H.; Chen, J. L.; You, C. H.; Tian, X. L.; Wang, X. H.; Kong, D. L.; Fan, W. J. A highly active and stable single-atom catalyst for oxygen reduction with axial Fe-O coordination prepared through a fast medium-temperature pyrolysis process. Appl. Catal. B: Environ. 2023, 337, 123009.
Zhou, X. Y.; Song, K. X.; Feng, Y.; Jiang, C.; Chen, Z. J.; Wang, Z. Z.; Yue, N. L.; Ge, X.; Zhang, W.; Zheng, W. T. Individually-atomic governing d–π* orbital interactions via Cu-promoted optimization of Fe-d band centers for high-efficiency zinc-air battery. Nano Res. 2023, 16, 4634–4642.
Zhu, E. Z.; Zheng, T. L.; Yu, J.; Shi, C. Y.; Zhou, L. X.; Jin, H. D.; Yang, J. R.; Luo, G. T.; Wei, D. Y.; Yang, X. K. et al. Electron redistribution and proton transfer induced by atomically fully exposed Cu-O-Fe clusters coupled with single-atom sites for efficient oxygen electrocatalysis. Energy Storage Mater. 2024, 69, 103410.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Liu, J. C.; Luo, F.; Li, J. Electrochemical potential-driven shift of frontier orbitals in M-N-C single-atom catalysts leading to inverted adsorption energies. J. Am. Chem. Soc. 2023, 145, 25264–25273.