PDF (18.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Engineered built-in electric fields in Cu0/CuOx nanozyme-decorated silicon nanodisks for the degradation of phenols and dyes

Sijun Huang1Tianqi Zhang1Shiyin Hong1Dechen Zhang1,2Yanping Zhao1Miao Li1Ying Wang3Xuewu Liu2()Yi Guo1()Li Xu1()
Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
Department of Nanomedicine, Houston Methodist Academic Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Show Author Information

Graphical Abstract

View original image Download original image
Inspired by the oxidation-induced heterogeneous architectures found in nature, a built-in electric field (BIEF) can be harnessed to trigger charge redistribution. This, in turn, leads to a remarkable enhancement in both the catalytic performance and reusability of nanozymes, thereby unlocking their potential for more efficient and sustainable applications.

Abstract

Laccase has demonstrated potential for the treatment of hazardous pollutants; however, its widespread application is hindered by stability issues. In contrast, nanozymes, with their remarkable stability, present a promising alternative. In this study, we developed silicon-anchored Cu0/CuOx nanozymes exhibiting laccase-like activity for the oxidation removal of phenols and dyes. The valence states of the copper species, which emerged through spontaneous oxidation, played a crucial role in creating a heterogeneous interface, exerting a significant impact on the catalytic efficacy of the copper nanozymes. By employing density functional theory (DFT) calculations, we revealed that the existence of a local built-in electric field (BIEF) among the heterogeneous components facilitated the cyclic consumption of Cu0 and the migration of lattice oxygen. This dynamic interplay modulated the levels of Cu+ and oxygen vacancies (OVs), thereby allowing for sustained catalytic performance within a defined period. Our findings underscore the importance of valence engineering in the rational design of nanozymes and highlight their potential as efficient catalysts for advancing environmental sustainability.

Electronic Supplementary Material

Download File(s)
7239_ESM.pdf (1.3 MB)

References

[1]

Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020, 21, 966.

[2]

Dittmer, N. T.; Gorman, M. J.; Kanost, M. R. Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 2009, 39, 596–606.

[3]

Paz, A.; Carballo, J.; Pérez, M. J.; Domínguez, J. M. Biological treatment of model dyes and textile wastewaters. Chemosphere 2017, 181, 168–177.

[4]

Li, X. P.; Wu, Z. S.; Tao, X. Y.; Li, R. Z.; Tian, D. D.; Liu, X. C. Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal. J. Hazard. Mater. 2022, 438, 129525.

[5]

Liang, H.; Lin, F. F.; Zhang, Z. J.; Liu, B. W.; Jiang, S. H.; Yuan, Q. P.; Liu, J. W. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360.

[6]

Huang, H.; Bai, J.; Li, J.; Lei, L. L.; Zhang, W. J.; Yan, S. J.; Li, Y. X. Fluorometric and colorimetric analysis of alkaline phosphatase activity based on a nucleotide coordinated copper ion mimicking polyphenol oxidase. J. Mater. Chem. B 2019, 7, 6508–6514.

[7]

Wang, J. H.; Huang, R. L.; Qi, W.; Su, R. X.; Binks, B. P.; He, Z. M. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B: Environ. 2019, 254, 452–462.

[8]

Wang, J. H.; Huang, R. L.; Qi, W.; Su, R. X.; He, Z. M. Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. J. Hazard. Mater. 2022, 429, 128404.

[9]

Fu, Z. D.; Guo, F.; Qiu, J. H.; Zhang, R. C.; Wang, M. X.; Wang, L. P. Extension of the alkyl chain length to adjust the properties of laccase-mimicking MOFs for phenolic detection and discrimination. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2022, 281, 121606.

[10]

Maity, T.; Jain, S.; Solra, M.; Barman, S.; Rana, S. Robust and reusable laccase mimetic copper oxide nanozyme for phenolic oxidation and biosensing. ACS Sustainable Chem. Eng. 2022, 10, 1398–1407.

[11]

Alizadeh, N.; Ghasemi, S.; Salimi, A.; Sham, T. K.; Hallaj, R. CuO nanorods as a laccase mimicking enzyme for highly sensitive colorimetric and electrochemical dual biosensor: Application in living cell epinephrine analysis. Colloids Surf. B: Biointerfaces 2020, 195, 111228.

[12]

Liu, Y. F.; Zhang, J.; Cui, S.; Wei, H.; Yang, D. Z. Perovskite hydroxide-based laccase mimics with controllable activity for environmental remediation and biosensing. Biosens. Bioelectron. 2024, 256, 116275.

[13]

Huang, F. W.; Ma, K.; Ni, X. W.; Qiao, S. L.; Chen, K. Z. CuCoFe Layered double hydroxides as laccase mimicking nanozymes for colorimetric detection of pheochromocytoma biomarkers. Chem. Commun. 2022, 58, 1982–1985.

[14]

Wang, Y. L.; Hu, J. K.; Ma, Y.; Li, K.; Huang, H.; Li, Y. X. Thiadiazol ligand-based laccase-like nanozymes with a high Cu+ ratio for efficient removal of tetracyclines through polymerization. J. Hazard. Mater. 2024, 478, 135501.

[15]

Zhang, H. L.; Chen, Y.; Hua, W.; Gu, W. J.; Zhuang, H. J.; Li, H. Y.; Jiang, X. W.; Mao, Y.; Liu, Y. Y.; Jin, D. Y. et al. Heterostructures with built-in electric fields for long-lasting chemodynamic therapy. Angew. Chem., Int. Ed. 2023, 62, e202300356.

[16]

Zhou, G. W.; Luo, L. L.; Li, L.; Ciston, J.; Stach, E. A.; Yang, J. C. Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 2012, 109, 235502.

[17]

Zhang, S. C.; Wei, X. T.; Dai, S. X.; Wang, H. L.; Huang, M. H. Efficient hydrazine electro-oxidation achieved by tailored electron injection into Fe(III) sites activating dehydrogenation. Adv. Funct. Mater. 2024, 34, 2311370.

[18]

Zhang, S. C.; Zhang, C. H.; Zheng, X. S.; Su, G.; Wang, H. L.; Huang, M. H. Integrating electrophilic and nucleophilic dual sites on heterogeneous bimetallic phosphide via enhancing interfacial electronic field to boost hydrazine oxidation and hydrogen evolution. Appl. Catal.: Environ. 2023, 324, 122207.

[19]

Xiao, J. Y.; Dong, H. R.; Li, Y. J.; Li, L.; Chu, D. D.; Xiang, S. X.; Hou, X. Z.; Dong, Q. X.; Xiao, S. J.; Jin, Z. L. et al. Graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) effectively activate peracetic acid for elimination of sulfamethazine in water under neutral condition. J. Hazard. Mater. 2022, 441, 129895.

[20]

Coluccio, M. L.; Onesto, V.; Marinaro, G.; Dell’Apa, M.; De Vitis, S.; Imbrogno, A.; Tirinato, L.; Perozziello, G.; Di Fabrizio, E.; Candeloro, P. et al. Cell theranostics on mesoporous silicon substrates. Pharmaceutics 2020, 12, 481.

[21]

Zhang, J. Y.; Liu, J. W. Nanozyme-based luminescence detection. Luminescence 2020, 35, 1185–1194.

[22]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[23]

Ahmaruzzaman, M. Ecofriendly biosynthetic route for production of Cu nanoparticles and evaluation of their photocatalytic activities for degradation of organic compounds. J. Iran. Chem. Soc. 2022, 19, 645–654.

[24]

Huang, S. J.; Tang, X. Y.; Yu, L. Q.; Hong, S. Y.; Liu, J. H.; Xu, B. F.; Liu, R.; Guo, Y.; Xu, L. Colorimetric assay of phosphate using a multicopper laccase-like nanozyme. Microchim. Acta 2022, 189, 378.

[25]

Zhang, X. L.; Wu, D.; Wu, Y. N.; Li, G. L. Bioinspired nanozyme for portable immunoassay of allergenic proteins based on a smartphone. Biosens. Bioelectron. 2021, 172, 112776.

[26]

Qiao, H. M.; Yang, H. T.; Han, Y. D.; Liu, Y. F.; Zhang, Y.; Zhang, X. Excellent laccase-like activity of melamine modified Cu-NH2-BDC and selective sensing analyses toward phenols and amines. Nano Res. 2024, 17, 9887–9897.

[27]

Guan, M.; Wang, M. F.; Qi, W.; Su, R. X.; He, Z. M. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Front. Chem. Sci. Eng. 2021, 15, 310–318.

[28]

Jing, W. J.; Yang, Y. J.; Shi, Q. H.; Wang, Y.; Liu, F. F. Machine learning-based nanozyme sensor array as an electronic tongue for the discrimination of endogenous phenolic compounds in food. Anal. Chem. 2024, 96, 16027–16035.

[29]

Xu, X. J.; Wang, J. H.; Huang, R. L.; Qi, W.; Su, R. X.; He, Z. M. Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catal. Sci. Technol. 2021, 11, 3402–3410.

[30]

Lin, Y. M.; Wang, F.; Yu, J.; Zhang, X.; Lu, G. P. Iron single-atom anchored N-doped carbon as a 'laccase-like' nanozyme for the degradation and detection of phenolic pollutants and adrenaline. J. Hazard. Mater. 2022, 425, 127763.

[31]

Dong, H. J.; Du, W.; Dong, J.; Che, R. C.; Kong, F.; Cheng, W. L.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365.

[32]

Shen, X. M.; Wang, Z. Z.; Gao, X. J.; Gao, X. F. Reaction mechanisms and kinetics of nanozymes: Insights from theory and computation. Adv. Mater. 2024, 36, 2211151.

[33]

Kim, S. J.; Kim, Y. I.; Lamichhane, B.; Kim, Y. H.; Lee, Y.; Cho, C. R.; Cheon, M.; Kim, J. C.; Jeong, H. Y.; Ha, T. et al. Flat-surface-assisted and self-regulated oxidation resistance of Cu(111). Nature 2022, 603, 434–438.

[34]

Wang, Y. H.; Yun, J. N.; Zhu, L. J.; Cao, B. W.; Gao, J. Z.; Shi, X. J.; Huang, Y.; Liu, P.; Zhu, G. Q. Mechanistic study of low-temperature CO oxidation over CuO/Cu2O interfaces with oxygen vacancy modification. Appl. Surf. Sci. 2022, 603, 154469.

[35]

Zhang, S. C.; Wang, Y.; Wei, X. T.; Chu, L.; Tian, W. Q.; Wang, H. L.; Huang, M. H. Dual interface-reinforced built-in electric field for chlorine-free seawater oxidation. Appl. Catal. B: Environ. 2023, 336, 122926.

[36]

Chiter, F.; Costa, D.; Maurice, V.; Marcus, P. DFT-based Cu(111)||Cu2O(111) model for copper metal covered by ultrathin copper oxide: Structure, electronic properties, and reactivity. J. Phys. Chem. C 2020, 124, 17048–17057.

Nano Research
Article number: 94907239
Cite this article:
Huang S, Zhang T, Hong S, et al. Engineered built-in electric fields in Cu0/CuOx nanozyme-decorated silicon nanodisks for the degradation of phenols and dyes. Nano Research, 2025, 18(3): 94907239. https://doi.org/10.26599/NR.2025.94907239
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return