PDF (16.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (9)

Tables (2)
Table 1
Table 2
Research Article | Open Access

Transition metal sulfides in alkaline hydrogen evolution electrocatalysis: Re-exploring their structure and composition evolution and its correlation with activity

Chengqi WuJiaqi LiuYiwei Tan ()
State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
Show Author Information

Graphical Abstract

View original image Download original image
When transition metal sulfides are used as electrocatalysts for alkaline hydrogen evolution reaction (HER), they are gradually degraded to the corresponding amorphous metal hydroxy salts/oxides from surface to bulk with elongating HER time. The apparent HER activities of all the derived metal hydroxy salts/oxides decrease, whereas their specific activities increase.

Abstract

Herein, the activity and stability evolution of transition metal sulfides used as electrocatalysts for alkaline hydrogen evolution reaction (HER) are studied during a prolonged HER period. We have thoroughly characterized and analyzed the composition and structure of NiV2S4, NiS, Ni3S2, and VS2 prior to HER and after the HER for 2–20 h at a constant current density of −100 mA·cm−2. It is found that all these metal sulfides in KOH electrolyte are gradually degraded to the corresponding amorphous metal hydroxy salts/oxysulfides (i.e., a-KNi(OH)3/a-NiOxSy and a-KV(OH)6/a-VOxSy) and finally to amorphous metal hydroxy salts/oxides (i.e., a-KNi(OH)3 and a-KV(OH)6/a-V2O3) from surface to bulk with elongating HER time. Concomitantly, the morphologies of the derived metal hydroxy salts/oxysulfides (oxides) are significantly different from the corresponding metal sulfide precursors, especially those containing metal ions (for example, V3+ in NiV2S4 and Ni+ in Ni3S2) in intermediate valence states due to the modification of chemical bonds to an extensive extent invoked by their capability of facilely accepting and donating electrons. This stability and structural evolution of these metal sulfides are substantiated by the calculated Pourbaix diagrams of Ni-S-H2O and Ni-V-S-H2O systems. After the HER at −100 mA·cm−2 for 20 h, compared to the corresponding pristine metal sulfides, the apparent HER activities of all the derived metal hydroxy salts/oxide decrease due to the diminution of their electrochemically active surface areas (ECSAs). On the contrary, their specific activities increase due to the enriched structural defects caused by the amorphous structures and changes in valence state of the metal ions.

Electronic Supplementary Material

Download File(s)
7240_ESM.pdf (2.5 MB)

References

[1]

Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem., Int. Ed. 2007, 46, 52–66.

[2]

Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491.

[3]

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

[4]

Bahuguna, G.; Patolsky, F. Why today’s “water” in water splitting is not natural water. Critical up-to-date perspective and future challenges for direct seawater splitting. Nano Energy 2023, 117, 108884.

[5]

Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.

[6]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

[7]

Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Huang, Y.; Liu, K. L.; Cheng, Z. Z.; Jiang, C.; He, J. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale 2015, 7, 19764–19788.

[8]

Strmcnik, D.; Lopes, P. P.; Genorio, B.; Stamenkovic, V. R.; Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 2016, 29, 29–36.

[9]

Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

[10]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[11]

Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

[12]

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

[13]

Li, A. L.; Sun, Y. M.; Yao, T. T.; Han, H. X. Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen. Chem.—Eur. J. 2018, 24, 18334–18355.

[14]

Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 2019, 31, 1802880.

[15]

Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 2019, 58, 244–276.

[16]

Yu, J. M.; Le, T. A.; Tran, N. Q.; Lee, H. Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media. Chem.—Eur. J. 2020, 26, 6423–6436.

[17]

Gong, Z. C.; Liu, J. J.; Ye, G. L.; Fei, H. L. Amorphous/crystalline heterophase electrocatalysts: Synthesis, applications and perspectives. Chem. Commun. 2023, 59, 5661–5676.

[18]

Kawashima, K.; Márquez, R. A.; Smith, L. A.; Vaidyula, R. R.; Carrasco-Jaim, O. A.; Wang, Z. Q.; Son, Y. J.; Cao, C. L.; Mullins, C. B. A review of transition metal boride, carbide, pnictide, and chalcogenide water oxidation electrocatalysts. Chem. Rev. 2023, 123, 12795–13208.

[19]

Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S.; Lee, J. S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.

[20]

Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351.

[21]

Dutta, A.; Samantara, A. K.; Dutta, S. K.; Jena, B. K.; Pradhan, N. Surface-oxidized dicobalt phosphide nanoneedles as a nonprecious, durable, and efficient OER catalyst. ACS Energy Lett. 2016, 1, 169–174.

[22]

Mabayoje, O.; Shoola, A.; Wygant, B. R.; Mullins, C. B. The role of anions in metal chalcogenide oxygen evolution catalysis: Electrodeposited thin films of nickel sulfide as “Pre-catalysts”. ACS Energy Lett. 2016, 1, 195–201.

[23]

Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.

[24]

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett. 2017, 2, 1937–1938.

[25]

Sun, H.; Min, Y. X.; Yang, W. J.; Lian, Y. B.; Lin, L.; Feng, K.; Deng, Z.; Chen, M. Z.; Zhong, J.; Xu, L. et al. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal. 2019, 9, 8882–8892.

[26]

Zhang, Y.; Gao, L.; Hensen, E. J. M.; Hofmann, J. P. Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Lett. 2018, 3, 1360–1365.

[27]

Wu, Z. S.; Gan, Q.; Li, X. L.; Zhong, Y. R.; Wang, H. L. Elucidating surface restructuring-induced catalytic reactivity of cobalt phosphide nanoparticles under electrochemical conditions. J. Phys. Chem. C 2018, 122, 2848–2853.

[28]

Zhao, Y. Q.; Jin, B.; Vasileff, A.; Jiao, Y.; Qiao, S. Z. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 2019, 7, 8117–8121.

[29]

Sun, Y.; Wu, J.; Zhang, Z.; Liao, Q. L.; Zhang, S. C.; Wang, X.; Xie, Y.; Ma, K. K.; Kang, Z.; Zhang, Y. Phase reconfiguration of multivalent nickel sulfides in hydrogen evolution. Energy Environ. Sci. 2022, 15, 633–644.

[30]
Lindsay, W. L. Chemical Equilibria in Soils; John Wiley & Sons: New York, 1979; pp 449.
[31]

Cauwenberg, P.; Verdonckt, F.; Maes, A. Flotation as a remediation technique for heavily polluted dredged material. 1. A feasibility study. Sci. Total Environ. 1998, 209, 113–119.

[32]

Mendoza-Sánchez, B.; Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 2016, 28, 6104–6135.

[33]

Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.

[34]

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

[35]

Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

[36]

Zhang, B.; Liu, J.; Wang, J. S.; Ruan, Y. J.; Ji, X.; Xu, K.; Chen, C.; Wan, H. Z.; Miao, L.; Jiang, J. J. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74–80.

[37]

Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610–617.

[38]

Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

[39]

Zhai, Z. J.; Li, C.; Zhang, L.; Wu, H. C.; Zhang, L.; Tang, N.; Wang, W.; Gong, J. L. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J. Mater. Chem. A 2018, 6, 9833–9838.

[40]

Sheng, G. Q.; Chen, J. H.; Li, Y. M.; Ye, H. Q.; Hu, Z. X.; Fu, X. Z.; Sun, R.; Huang, W. X.; Wong, C. P. Flowerlike NiCo2S4 hollow sub-microspheres with mesoporous nanoshells support Pd nanoparticles for enhanced hydrogen evolution reaction electrocatalysis in both acidic and alkaline conditions. ACS Appl. Mater. Interfaces 2018, 10, 22248–22256.

[41]

Zhou, Y.; Li, T. T.; Xi, S. Q.; He, C.; Yang, X. G.; Wu, H. J. One-step synthesis of self-standing Ni3S2/Ni2P heteronanorods on nickel foam for efficient electrocatalytic hydrogen evolution over a wide pH range. ChemCatChem 2018, 10, 5487–5495.

[42]

Lin, J. H.; Wang, P. C.; Wang, H. H.; Li, C.; Si, X. Q.; Qi, J. L.; Cao, J.; Zhong, Z. X.; Fei, W. D.; Feng, J. C. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246.

[43]

Guo, Y. N.; Tang, J.; Henzie, J.; Jiang, B.; Xia, W.; Chen, T.; Bando, Y.; Kang, Y. M.; Hossain, M. S. A.; Sugahara, Y. et al. Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 2020, 14, 4141–4152.

[44]

Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.

[45]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[46]

Nairan, A.; Zou, P. C.; Liang, C. W.; Liu, J. X.; Wu, D.; Liu, P.; Yang, C. NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 2019, 29, 1903747.

[47]

Cao, B.; Cheng, Y.; Hu, M. H.; Jing, P.; Ma, Z. X.; Liu, B. C.; Gao, R.; Zhang, J. Efficient and durable 3D self-supported nitrogen-doped carbon-coupled nickel/cobalt phosphide electrodes: Stoichiometric ratio regulated phase- and morphology-dependent overall water splitting performance. Adv. Funct. Mater. 2019, 29, 1906316.

[48]

Peng, L. S.; Liao, M. S.; Zheng, X. Q.; Nie, Y.; Zhang, L.; Wang, M. J.; Xiang, R.; Wang, J.; Li, L.; Wei, Z. D. Accelerated alkaline hydrogen evolution on M(OH) x /M–MoPO x (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps. Chem. Sci. 2020, 11, 2487–2493.

[49]

Sun, H. M.; Tian, C. Y.; Fan, G. L.; Qi, J. N.; Liu, Z. T.; Yan, Z. H.; Cheng, F. Y.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.

[50]

Wang, Z. Y.; Chen, J. Y.; Song, E. H.; Wang, N.; Dong, J. C.; Zhang, X.; Ajayan, P. M.; Yao, W.; Wang, C. F.; Liu, J. J. et al. Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nat. Commun. 2021, 12, 5960.

[51]

Chen, Z. L.; Qing, H. L.; Wang, R. R.; Wu, R. B. Charge pumping enabling Co-NC to outperform benchmark Pt catalyst for pH-universal hydrogen evolution reaction. Energy Environ. Sci. 2021, 14, 3160–3173.

[52]

Wang, J.; Zhang, M. K.; Yang, G. L.; Song, W. W.; Zhong, W. T.; Wang, X. Y.; Wang, M. M.; Sun, T. M.; Tang, Y. F. Heterogeneous bimetallic Mo-NiP x /NiS y as a highly efficient electrocatalyst for robust overall water splitting. Adv. Funct. Mater. 2021, 31, 2101532.

[53]

Zhang, D. D.; Li, H. B.; Riaz, A.; Sharma, A.; Liang, W. S.; Wang, Y.; Chen, H. J.; Vora, K.; Yan, D.; Su, Z. et al. Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy Environ. Sci. 2022, 15, 185–195.

[54]

Wu, L. B.; Zhang, F. H.; Song, S. W.; Ning, M. H.; Zhu, Q.; Zhou, J. Q.; Gao, G. H.; Chen, Z. Y.; Zhou, Q. C.; Xing, X. X. et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod- nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv. Mater. 2022, 34, 2201774.

[55]

Jiang, N.; Tang, Q.; Sheng, M. L.; You, B.; Jiang, D. E.; Sun, Y. J. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084.

[56]

Xu, K.; Ding, H.; Lv, H. F.; Tao, S.; Chen, P. Z.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Understanding structure-dependent catalytic performance of nickel selenides for electrochemical water oxidation. ACS Catal. 2017, 7, 310–315.

[57]

Xu, X.; Liang, H. F.; Ming, F. W.; Qi, Z. B.; Xie, Y. Q.; Wang, Z. C. Prussian blue analogues derived penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting. ACS Catal. 2017, 7, 6394–6399.

[58]

Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

[59]

Yang, C. H.; Ou, X.; Xiong, X. H.; Zheng, F. H.; Hu, R. Z.; Chen, Y.; Liu, M. L.; Huang, K. V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 107–113.

[60]

Liu, Y.; Sun, Z. H.; Sun, X.; Lin, Y.; Tan, K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew. Chem., Int. Ed. 2020, 59, 2473–2482.

[61]

Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. K2V6O16·2.7H2O nanorod cathode: An advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J. Mater. Chem. A 2018, 6, 15530–15539.

[62]

Heintz, A.; Illenberger, C. Thermodynamics of vanadium redox flow batteries-electrochemical and calorimetric investigations. Ber. Bunsen-Ges. Phys. Chem. 1998, 102, 1401–1409.

[63]

Hagemann, H. J.; Ihrig, H. Valence change and phase stability of 3 d-doped BaTiO3 annealed in oxygen and hydrogen. Phys. Rev. B 1979, 20, 3871–3878.

[64]

Dueñas, S.; Castán, H.; García, H.; San Andrés, E.; Toledano-Luque, M.; Mártil, I.; González-Díaz, G.; Kukli, K.; Uustare, T.; Aarik, J. A comparative study of the electrical properties of TiO2 films grown by high-pressure reactive sputtering and atomic layer deposition. Semicond. Sci. Technol. 2005, 20, 1044–1051.

Nano Research
Article number: 94907240
Cite this article:
Wu C, Liu J, Tan Y. Transition metal sulfides in alkaline hydrogen evolution electrocatalysis: Re-exploring their structure and composition evolution and its correlation with activity. Nano Research, 2025, 18(3): 94907240. https://doi.org/10.26599/NR.2025.94907240
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return