The application of emerging luminophores such as near-infrared (NIR) emissive complexes based on earth-abundant chromium as central ion and triplet-triplet annihilation upconversion (TTA-UC) systems in air as optical reporters for bioimaging or photonic materials for energy conversion requires simple and efficient strategies for their complete protection from luminescence quenching by oxygen. Therefore, we explored the influence of sol–gel synthesis routes on the oxygen protection efficiency of the resulting core and core/shell silica nanoparticles (SiO2 NPs), utilizing the molecular ruby-type luminophores CrPF6 ([Cr(ddpd)2](PF6)3; ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridin-2,6-diamine) and CrBF4 ([Cr(ddpd)2](BF4)3) with their oxygen-dependent, but polarity-, proticity-, viscosity-, and concentration-independent luminescence as optical probes for oxygen permeability. The sol–gel chemistry routes we assessed include the classical Stöber method and the underexplored L-arginine approach, which relies on the controlled hydrolysis of tetraethoxysilane (TEOS) in a biphasic cyclohexane/water system with the catalyst L-arginine. As demonstrated by luminescence measurements of air- and argon-saturated dispersions of CrPF6- and CrBF4-stained SiO2 NPs of different size and particle architecture, utilizing the luminescence decay kinetics of argon-saturated solutions of CrPF6 and CrBF4 in acetonitrile (ACN) as benchmarks, only SiO2 NPs or shells synthesized by the L-arginine approach provided complete oxygen protection of the CrIII complexes under ambient conditions. We ascribe the different oxygen shielding efficiencies of the silica networks explored to differences in density and surface chemistry of the resulting nanomaterials and coatings, leading to different oxygen permeabilities. Our L-arginine based silica encapsulation strategy can open the door for the efficient usage of oxygen-sensitive luminophores and TTA-UC systems as optical reporters and spectral shifters in air in the future.
Kjaer, K. S.; Kaul, N.; Prakash, O.; Chábera, P.; Rosemann, N. S. W.; Honarfar, A.; Gordivska, O.; Fredin, L. A.; Bergquist, K. E.; Häggstrom, L. et al. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 2019, 363, 249–253.
Sittel, S.; Naumann, R.; Heinze, K. Molecular rubies in photoredox catalysis. Front. Chem. 2022, 10, 887439.
Sittel, S.; Sell, A. C.; Hofmann, K.; Wiedemann, C.; Nau, J. P.; Kerzig, C.; Manolikakes, G.; Heinze, K. Visible-light induced fixation of SO2 into organic molecules with polypyridine chromium(III) complexes. Chemcatchem 2023, 15, e202201562.
Sinha, N.; Wegeberg, C.; Häussinger, D.; Prescimone, A.; Wenger, O. S. Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes. Nat. Chem. 2023, 15, 1730–1736.
Dorn, M.; Kalmbach, J.; Boden, P.; Kruse, A.; Dab, C.; Reber, C.; Niedner-Schatteburg, G.; Lochbrunner, S.; Gerhards, M.; Seitz, M. et al. Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(III) complex I: Synthesis, spectroscopy and static quantum chemistry. Chem. Sci. 2021, 12, 10780–10790.
Dorn, M.; Kalmbach, J.; Boden, P.; Päpcke, A.; Gómez, S.; Förster, C.; Kuczelinis, F.; Carrella, L. M.; Büldt, L. A.; Bings, N. H. et al. A vanadium(III) complex with blue and NIR-II spin-flip luminescence in solution. J. Am. Chem. Soc. 2020, 142, 7947–7955.
East, N. R.; Naumann, R.; Förster, C.; Ramanan, C.; Diezemann, G.; Heinze, K. Oxidative two-state photoreactivity of a manganese(IV) complex using near-infrared light. Nat. Chem. 2024, 16, 827–834.
Herr, P.; Kerzig, C.; Larsen, C. B.; Häussinger, D.; Wenger, O. S. Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Nat. Chem. 2021, 13, 956–962.
Ning, Y. Y.; Jin, G. Q.; Wang, M. X.; Gao, S.; Zhang, J. L. Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr. Opin. Chem. Biol. 2022, 66, 102097.
Wang, C.; Ebel, K.; Heinze, K.; Resch-Genger, U.; Bald, I. Quantum yield of DNA strand breaks under photoexcitation of a molecular ruby. Chem.—Eur. J. 2023, 29, e202203719.
Liu, Y. Z.; Persson, P.; Sundström, V.; Wärnmark, K. Fe N-heterocyclic carbene complexes as promising photosensitizers. Acc. Chem. Res. 2016, 49, 1477–1485.
Chiang, K. P.; Barrett, P. M.; Ding, F. Z.; Smith, J. M.; Kingsley, S.; Brennessel, W. W.; Clark, M. M.; Lachicotte, R. J.; Holland, P. L. Ligand dependence of binding to three-coordinate Fe(II) complexes. Inorg. Chem. 2009, 48, 5106–5116.
Ganguly, O. M.; Moulik, S. Interactions of Mn complexes with DNA: The relevance of therapeutic applications towards cancer treatment. Dalton Trans. 2023, 52, 10639–10656.
Berggren, G.; Huang, P.; Eriksson, L.; Styring, S.; Anderlund, M. F.; Thapper, A. Synthesis and characterisation of low valent Mn-complexes as models for Mn-catalases. Dalton Trans. 2010, 39, 11035–11044.
Szklarzewicz, J.; Jurowska, A.; Matoga, D.; Kruczala, K.; Kazek, G.; Mordyl, B.; Sapa, J.; Papiez, M. Synthesis, coordination properties and biological activity of vanadium complexes with hydrazone Schiff base ligands. Polyhedron 2020, 185, 114589.
Madec, H.; Figueiredo, F.; Cariou, K.; Roland, S.; Sollogoub, M.; Gasser, G. Metal complexes for catalytic and photocatalytic reactions in living cells and organisms. Chem. Sci. 2023, 14, 409–442.
Gourdon, L.; Cariou, K.; Gasser, G. Phototherapeutic anticancer strategies with first-row transition metal complexes: A critical review. Chem. Soc. Rev. 2022, 51, 1167–1195.
Bozic-Weber, B.; Constable, E. C.; Housecroft, C. E. Light harvesting with Earth abundant d-block metals: Development of sensitizers in dye-sensitized solar cells (DSCs). Coord. Chem. Rev. 2013, 257, 3089–3106.
Qin, Y. Y.; She, P. F.; Huang, X. M.; Huang, W.; Zhao, Q. Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331.
Sasmal, P. K.; Saha, S.; Majumdar, R.; Dighe, R. R.; Chakravarty, A. R. Oxovanadium(IV)-based near-IR PDT agents: Design to biological evaluation. Chem. Commun. 2009, 1703–1705.
Sunitha, N.; Raj, C. I. S.; Kumari, B. S. Development of nanofunctionalized oxovanadium(IV) complex and its anticancer, antidiabetic, DNA cleavage and cell imaging studies. Int. J. Pharm. 2023, 644, 123339.
Wegeberg, C.; Wenger, O. S. Luminescent first-row transition metal complexes. JACS Au. 2021, 1, 1860–1876.
Sinha, N.; Wenger, O. S. Photoactive metal-to-ligand charge transfer excited states in 3D6 complexes with Cr0, MnI, FeII, and CoIII. J. Am. Chem. Soc. 2023, 145, 4903–4920.
Glaser, F.; Wenger, O. S. Recent progress in the development of transition-metal based photoredox catalysts. Coord. Chem. Rev. 2020, 405, 213129.
Wenger, O. S. Photoactive complexes with earth-abundant metals. J. Am. Chem. Soc. 2018, 140, 13522–13533.
Reichenauer, F.; Wang, C.; Förster, C.; Boden, P.; Ugur, N.; Báez-Cruz, R.; Kalmbach, J.; Carrella, L. M.; Rentschler, E.; Ramanan, C. et al. Strongly red-emissive molecular ruby [Cr(bpmp)2]3+ surpasses [Ru(bpy)3]2+. J. Am. Chem. Soc. 2021, 143, 11843–11855.
Otto, S.; Grabolle, M.; Förster, C.; Kreitner, C.; Resch-Genger, U.; Heinze, K. [Cr(ddpd)2]3+: A Molecular, water-soluble, highly NIR-emissive ruby analogue. Angew. Chem., Int. Ed. 2015, 54, 11572–11576.
Kitzmann, W. R.; Ramanan, C.; Naumann, R.; Heinze, K. Molecular ruby: Exploring the excited state landscape. Dalton Trans. 2022, 51, 6519–6525.
Lee, H.; Lee, M. S.; Uji, M.; Harada, N.; Park, J. M.; Lee, J.; Seo, S. E.; Park, C. S.; Kim, J.; Park, S. J. et al. Nanoencapsulated phase-change materials: Versatile and air-tolerant platforms for triplet-triplet annihilation upconversion. ACS Appl. Mater. Interfaces. 2022, 14, 4132–4143.
Castellano, F. N.; McCusker, C. E. MLCT sensitizers in photochemical upconversion: Past, present, and potential future directions. Dalton Trans. 2015, 44, 17906–17910.
Singh-Rachford, T. N.; Castellano, F. N. Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 2010, 254, 2560–2573.
Baluschev, S.; Katta, K.; Avlasevich, Y.; Landfester, K. Annihilation upconversion in nanoconfinement: Solving the oxygen quenching problem. Mater. Horiz. 2016, 3, 478–486.
Sell, A. C.; Wetzel, J. C.; Schmitz, M.; Maijenburg, A. W.; Woltersdorf, G.; Naumann, R.; Kerzig, C. Water-soluble ruthenium complex-pyrene dyads with extended triplet lifetimes for efficient energy transfer applications. Dalton Trans. 2022, 51, 10799–10808.
Wang, C.; Reichenauer, F.; Kitzmann, W. R.; Kerzig, C.; Heinze, K.; Resch-Genger, U. Efficient triplet-triplet annihilation upconversion sensitized by a chromium(III) complex via an underexplored energy transfer mechanism. Angew. Chem., Int. Ed. 2022, 61, e202202238.
Schloemer, T.; Narayanan, P.; Zhou, Q.; Belliveau, E.; Seitz, M.; Congreve, D. N. Nanoengineering triplet-triplet annihilation upconversion: From materials to real-world applications. ACS Nano 2023, 17, 3259–3288.
Schäferling, M. The art of fluorescence imaging with chemical sensors. Angew. Chem., Int. Ed. 2012, 51, 3532–3554.
Borisov, S. M.; Klimant, I. Luminescent nanobeads for optical sensing and imaging of dissolved oxygen. Microchim. Acta 2009, 164, 7–15.
Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.
Otto S.; Scholz N.; Behnke T.; Resch-Genger, U.; Heinze K. Thermo-chromium: A contactless optical molecular thermometer. Chem.—Eur. J. 2017, 23, 12131–12135.
Wang, C.; Kitzmann, W. R.; Weigert, F.; Förster, C.; Wang, X. F.; Heinze, K.; Resch-Genger, U. Matrix effects on photoluminescence and oxygen sensitivity of a molecular ruby. ChemPhotoChem 2022, 6, e202100296.
Stein, L.; Wang, C.; Förster, C.; Resch-Genger, U.; Heinze, K. Bulky ligands protect molecular ruby from oxygen quenching. Dalton Trans. 2022, 51, 17664–17670.
Stich, M. I. J.; Nagl, S.; Wolfbeis, O. S.; Henne, U.; Schaeferling, M. A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces. Adv. Funct. Mater. 2008, 18, 1399–1406.
Fischer, L. H.; Stich, M. I. J.; Wolfbeis, O. S.; Tian, N.; Holder, E.; Schäferling, M. Red- and green-emitting iridium(III) complexes for a dual barometric and temperature-sensitive paint. Chem.—Eur. J. 2009, 15, 10857–10863.
Stich, M. I. J.; Fischer, L. H.; Wolfbeis, O. S. Multiple fluorescent chemical sensing and imaging. Chem. Soc. Rev. 2010, 39, 3102–3114.
Lu, F.; Li, L. L.; Zhang, M.; Yu, C. W.; Pan, Y. H.; Cheng, F. F.; Hu, W. B.; Lu, X. M.; Wang, Q.; Fan, Q. L. Confined semiconducting polymers with boosted NIR light-triggered H2O2 production for hypoxia-tolerant persistent photodynamic therapy. Chem. Sci. 2024, 15, 12086–12097.
Lu, F.; Zhan, C.; Gong, Y.; Tang, Y. F.; Xie, C.; Wang, Q.; Wang, W. J.; Fan, Q. L.; Huang, W. A general strategy to encapsulate semiconducting polymers within PEGylated mesoporous silica nanoparticles for optical imaging and drug delivery. Part. Part. Syst. Charact. 2020, 37, 1900483.
Liao, X. J.; Kahle, F. J.; Liu, B.; Bässler, H.; Zhang, X. H.; Köhler, A.; Greiner, A. Polarized blue photoluminescence of mesoscopically ordered electrospun non-conjugated polyacrylonitrile nanofibers. Mater. Horiz. 2020, 7, 1605–1612.
Zhao, X.; Chen, S. R.; Ye, C. Q.; Li, L.; Hu, Y. Q.; Wang, X. M.; Song, Y. L. Triplet-triplet annihilation upconversion combined with afterglow phosphors for multi-dimensional anti-counterfeiting and encoding. J. Mater. Chem. C 2022, 10, 12853–12862.
Liu, Q.; Yang, T. S.; Feng, W.; Li, F. Y. Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J. Am. Chem. Soc. 2012, 134, 5390–5397.
Kwon, O. S.; Song, H. S.; Conde, J.; Kim, H. I.; Artzi, N.; Kim, J. H. Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo. ACS Nano 2016, 10, 1512–1521.
Kwon, O. S.; Kim, J. H.; Cho, J. K.; Kim, J. H. Triplet-triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 318–325.
Zhang, D. W.; Wu, Z. Z.; Xu, J. Q.; Liang, J. L.; Li, J.; Yang, W. S. Tuning the emission properties of Ru(phen)32+ doped silica nanoparticles by changing the addition time of the dye during the stöber process. Langmuir 2010, 26, 6657–6662.
Mirenda, M.; Levi, V.; Bossi, M. L.; Bruno, L.; Bordoni, A. V.; Regazzoni, A. E.; Wolosiuk, A. Temperature response of luminescent tris(bipyridine)ruthenium(II)-doped silica nanoparticles. J. Colloid Interface Sci. 2013, 392, 96–101.
Titos-Padilla, S.; Colacio, E.; Pope, S. J. A.; Delgado, J. J.; Melgosa, M.; Herrera, J. M. Photophysical properties of [Ir(tpy)2]3+-doped silica nanoparticles and synthesis of a colour-tunable material based on an Ir(core)-Eu(shell) derivative. J. Mater. Chem. C 2013, 1, 3808–3815.
Jiménez, J. R.; Míguez-Lago, S.; Poncet, M.; Ye, Y. T.; Ruiz, C. L.; Cruz, C. M.; Campaña, A. G.; Colacio, E.; Piguet, C.; Herrera, J. M. EuIII functionalized silica nanoparticles encapsulating chiral CrIII complexes with simultaneous unpolarized red and polarized NIR-I luminescence. J. Mater. Chem. C 2023, 11, 2582–2590.
Iuele, H.; Forciniti, S.; Onesto, V.; Colella, F.; Siciliano, A. C.; Chandra, A.; Nobile, C.; Gigli, G.; del Mercato, L. L. Facile one pot synthesis of hybrid core–shell silica-based sensors for live imaging of dissolved oxygen and hypoxia mapping in 3D cell models. ACS Appl. Mater. Interfaces 2024, 16, 55071–55085.
Askes, S. H. C.; Leeuwenburgh, V. C.; Pomp, W.; Arjmandi-Tash, H.; Tanase, S.; Schmidt, T.; Bonnet, S. Water-dispersible silica-coated upconverting liposomes: Can a thin silica layer protect TTA-UC against oxygen quenching. ACS Biomater. Sci. Eng. 2017, 3, 322–334.
Jiwan, J. L. H.; Robert, E.; Soumillion, J. P. Sol–gel silicate thin films bearing attached pyrene fluorescing probes hidden from oxygen but still accessible to organic electron transfer quenchers. J. Photochem. Photobiol. A Chem. 1999, 122, 61–68.
Estevão, B. M.; Vilela, R. R. C.; Geremias, I. P.; Zanoni, K. P. S.; de Camargo, A. S. S.; Zucolotto, V. Mesoporous silica nanoparticles incorporated with Ir(III) complexes: From photophysics to photodynamic therapy. Photodiagn. Photodyn. Ther. 2022, 40, 103052.
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.
Ab Rahman, I.; Padavettan, V. Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—A review. J. Nanomater. 2012, 2012, 132424.
Tavernaro, I.; Cavelius, C.; Peuschel, H.; Kraegeloh, A. Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy. Beilstein J. Nanotechnol. 2017, 8, 1283–1296.
Hartlen, K. D.; Athanasopoulos, A. P. T.; Kitaev, V. Facile preparation of highly monodisperse small silica spheres (15 to > 200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 2008, 24, 1714–1720.
Schmidt, S.; Tavernaro, I.; Cavelius, C.; Weber, E.; Kümper, A.; Schmitz, C.; Fleddermann, J.; Kraegeloh, A. Silica nanoparticles for intracellular protein delivery: A novel synthesis approach using green fluorescent protein. Nanoscale Res. Lett. 2017, 12, 545.
Srivastava, P.; Tavernaro, I.; Scholtz, L.; Genger, C.; Welker, P.; Schreiber, F.; Meyer, K.; Resch-Genger, U. Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies. Sci. Rep. 2023, 13, 1321.
Clasen, A.; Wenderoth, S.; Tavernaro, I.; Fleddermann, J.; Kraegeloh, A.; Jung, G. Kinetic and spectroscopic responses of pH-sensitive nanoparticles: Influence of the silica matrix. RSC Adv. 2019, 9, 35695–35705.
Abdelwahab, W. M.; Phillips, E.; Patonay, G. Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique: Application to latent fingerprints detection and hemocompatibility studies. J. Colloid Interface Sci. 2018, 512, 801–811.
Dvoranová, D.; Barbieriková, Z.; Brezová, V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study). Molecules 2014, 19, 17279–17304.
Korzeniowska, B.; Nooney, R.; Wencel, D.; McDonagh, C. Silica nanoparticles for cell imaging and intracellular sensing. Nanotechnology 2013, 24, 442002.
Fouilloux, S.; Daillant, J.; Thill, A. Single step synthesis of 5–30 nm monodisperse silica nanoparticles: Important experimental parameters and modeling. Colloids Surf. A Physicochem. Eng. Asp. 2012, 393, 122–127.
Ding, L. J.; Zhang, W.; Zhang, Y. L.; Lin, Z. Z.; Wang, X. D. Luminescent silica nanosensors for lifetime based imaging of intracellular oxygen with millisecond time resolution. Anal. Chem. 2019, 91, 15625–15633.
Masalov, V. M.; Sukhinina, N. S.; Sovyk, D. N.; Ralchenko, V. G.; Emel'chenko, G. A. Kinetic regularities of the synthesis of silica nanoparticles by heterogeneous hydrolysis of tetraethoxysilane using L-arginine as a catalyst. Colloid J. 2024, 86, 248–257.
Chen, Y. F.; Zhan, X.; Bueno, S. L. A.; Shafei, I. H.; Ashberry, H. M.; Chatterjee, K.; Xu, L.; Tang, Y. W.; Skrabalak, S. E. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 2021, 6, 231–237.
Ling, D. S.; Hackett, M. J.; Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014, 9, 457–477.
Luo, Q. J.; Hickey, R. J.; Park, S. J. Controlling the location of nanoparticles in colloidal assemblies of amphiphilic polymers by tuning nanoparticle surface chemistry. ACS Macro Lett. 2013, 2, 107–111.
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.