PDF (22.9 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Synthesis of monolayer tungsten nitride: Rapid optical visualization and electrical impact of grain boundaries

Qiuyun Yang1,2,§Dehu Li1,§Fanfan Shi1,§Zhibin Shao3Na Wang2Yao Peng1Edwin Hang Tong Teo4Zheng Liu4 ()Hong Wang1 ()
Department of Physics, University of Science and Technology of China, Hefei 230026, China
Institute of Electrical and Electronic Engineering, Anhui Science and Technology University, Fengyang 233100, China
College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, China
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

§ Qiuyun Yang, Dehu Li, and Fanfan Shi contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A chemical vapor deposition method was developed for synthesizing uniform monolayer tungsten nitride (W2N3) crystals on SiO2/Si substrates, and an effective wet-etch approach was introduced for the visualization of grain boundaries (GBs) using optical microscopy. Electrical measurements demonstrated that GBs of monolayer W2N3 hinder electrical conduction, serving as barriers to transport.

Abstract

Two-dimensional (2D) transition metal nitrides (TMNs) have garnered significant attention in fields such as energy storage and nanoelectronics due to their unique electrical properties, high chemical stability, and excellent mechanical strength. In polycrystalline 2D TMNs films, grain boundaries (GBs) are inevitable structural defects that could play a crucial role in determining the material's properties. Developing rapid optical visualization methods is essential for obtaining large-scale information on the distribution of GBs. However, the rapid visualization of GBs in 2D TMNs, as well as the impact of GBs on the material's electrical properties, has never been previously reported. In this study, we demonstrate the growth of monolayer tungsten nitride crystals on SiO2/Si substrates by chemical vapor deposition (CVD). High-resolution transmission electron microscopy reveals the presence of GBs at the junctions of twisted grains. A wet-etch process utilizing buffered oxide etchant (BOE) enables rapid and effective visualization of these GBs with optical microscopy. By analyzing grains with different twist angles, we find that GBs at specific angles demonstrate increased stability during etching. Electrical measurements revealed that tilted GBs hinder electrical transport, with GBs of a 62° twist angle showing sheet conductance nearly half that within the monolayer grain. This work not only provides insights into GBs in monolayer tungsten nitride but also lays the groundwork for exploring GBs-related properties in other 2D TMNs.

Electronic Supplementary Material

Download File(s)
7242_ESM.pdf (790.4 KB)

References

[1]

Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

[2]

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[3]

Fan, Y. X.; Li, L.; Zhang, Y.; Zhang, X. T.; Geng, D. C.; Hu, W. P. Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals. Adv. Funct. Mater. 2022, 32, 2111357.

[4]

Tang, X.; Guo, X.; Wu, W. J.; Wang, G. X. 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for Lithium-based batteries. Adv. Energy Mater. 2018, 8, 1801897.

[5]

Kumar, H.; Frey, N. C.; Dong, L.; Anasori, B.; Gogotsi, Y.; Shenoy, V. B. Tunable magnetism and transport properties in nitride MXenes. ACS Nano 2017, 11, 7648–7655.

[6]

Hong, Y. L.; Liu, Z. B.; Wang, L.; Zhou, T. Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M. L.; Sun, D. M. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020, 369, 670–674.

[7]

Wang, H.; Sandoz-Rosado, E. J.; Tsang, S. H.; Lin, J. J.; Zhu, M. M.; Mallick, G.; Liu, Z.; Teo, E. H. T. Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition. Adv. Funct. Mater. 2019, 29, 1902663.

[8]

Xiao, X.; Wang, H.; Bao, W. Z.; Urbankowski, P.; Yang, L.; Yang, Y.; Maleski, K.; Cui, L. F.; Billinge, S. J. L.; Wang, G. X. et al. Two-dimensional arrays of transition metal nitride nanocrystals. Adv. Mater. 2019, 31, 1902393.

[9]

Wang, D.; Zhou, C. K.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M. Z.; Vaikuntanathan, S.; Liu, C.; Klie, R. F.; Talapin, D. V. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242–1247.

[10]

Lim, K. R. G.; Handoko, A. D.; Nemani, S. K.; Wyatt, B.; Jiang, H. Y.; Tang, J. W.; Anasori, B.; Seh, Z. W. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 2020, 14, 10834–10864.

[11]

Hassan, T.; Kim, J.; Manh, H. N.; Iqbal, A.; Gao, Z. G.; Kim, H.; Hussain, N.; Naqvi, S. M.; Zaman, S.; Narayanasamy, M. et al. Semiconducting properties of delaminated titanium nitride Ti4N3T x MXene with gate-tunable electrical conductivity. ACS Nano 2024, 18, 23477–23488.

[12]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[13]

Becker, J. S.; Gordon, R. G. Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis ( tert-butylimido) bis (dimethylamido) tungsten and ammonia. Appl. Phys. Lett. 2003, 82, 2239–2241.

[14]

You, J. Y.; Gu, B.; Su, G.; Feng, Y. P. Two-dimensional topological superconductivity candidate in a van der Waals layered material. Phys. Rev. B 2021, 103, 104503.

[15]

Campi, D.; Kumari, S.; Marzari, N. Prediction of phonon-mediated superconductivity with high critical temperature in the two-dimensional topological semimetal W2N3. Nano Lett. 2021, 21, 3435–3442.

[16]

Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater. 2018, 30, 1805655.

[17]

Xiao, X.; Yu, H. M.; Jin, H. Y.; Wu, M. H.; Fang, Y. S.; Sun, J. Y.; Hu, Z. M.; Li, T. Q.; Wu, J. B.; Huang, L. et al. Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 2017, 11, 2180–2186.

[18]

Jin, H. Y.; Gu, Q. F.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Z. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020, 6, 2382–2394.

[19]

Zhao, C. B.; Meng, C. X.; Wang, B.; Wang, C.; Li, R. T.; Fu, Q. Vapor–liquid–solid growth of thin and epitaxial transition metal nitride nanosheets for catalysis and energy conversion. ACS Appl. Nano Mater. 2021, 4, 10735–10742.

[20]

Guan, H. M.; Li, W. T.; Han, J.; Yi, W. C.; Bai, H.; Kong, Q. H.; Xi, G. C. General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nat. Commun. 2021, 12, 1376.

[21]

Cao, J.; Li, T. S.; Gao, H. Z.; Lin, Y. X.; Wang, X. Z.; Wang, H. Z.; Palacios, T.; Ling, X. Realization of 2D crystalline metal nitrides via selective atomic substitution. Sci. Adv. 2020, 6, eaax8784.

[22]

Chin, H. T.; Wang, D. C.; Gulo, D. P.; Yao, Y. C.; Yeh, H. C.; Muthu, J.; Chen, D. R.; Kao, T. C.; Kalbáč, M.; Lin, P. H. et al. Tungsten nitride (W5N6): An ultraresilient 2D semimetal. Nano Lett. 2024, 24, 67–73.

[23]

Chin, H. T.; Wang, D. C.; Wang, H.; Muthu, J.; Khurshid, F.; Chen, D. R.; Hofmann, M.; Chuang, F. C.; Hsieh, Y. P. Confined VLS growth of single-layer 2D tungsten nitrides. ACS Appl. Mater. Interfaces 2024, 16, 1705–1711.

[24]

Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

[25]

Yao, W. Q.; Wu, B.; Liu, Y. Q. Growth and grain boundaries in 2D materials. ACS Nano 2020, 14, 9320–9346.

[26]

Ly, T. H.; Perello, D. J.; Zhao, J.; Deng, Q. M.; Kim, H.; Han, G. H.; Chae, S. H.; Jeong, H. Y.; Lee, Y. H. Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nat. Commun. 2016, 7, 10426.

[27]

Wu, J. Y.; Cao, P. Q.; Zhang, Z. S.; Ning, F. L.; Zheng, S. S.; He, J. Y.; Zhang, Z. L. Grain-size-controlled mechanical properties of polycrystalline monolayer MoS2. Nano Lett. 2018, 18, 1543–1552.

[28]

He, Y. M.; Tang, P. Y.; Hu, Z. L.; He, Q. Y.; Zhu, C.; Wang, L. Q.; Zeng, Q. S.; Golani, P.; Gao, G. H.; Fu, W. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.

[29]

Yu, M. L.; Hu, Z. L.; Zhou, J. Z.; Lu, Y.; Guo, W. L.; Zhang, Z. H. Retrieving grain boundaries in 2D materials. Small 2023, 19, 2205593.

[30]

Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

[31]

Yang, P. F.; Liu, F. C.; Li, X.; Hu, J. Y.; Zhou, F.; Zhu, L. J.; Chen, Q.; Gao, P.; Zhang, Y. F. Highly reproducible epitaxial growth of wafer-scale single-crystal monolayer MoS2 on sapphire. Small Methods 2023, 7, 2300165.

[32]

Zhao, X. X.; Ji, Y. J.; Chen, J. Y.; Fu, W.; Dan, J. D.; Liu, Y. Y.; Pennycook, S. J.; Zhou, W.; Loh, K. P. Healing of planar defects in 2D materials via grain boundary sliding. Adv. Mater. 2019, 31, 1900237.

[33]

Fan, X. G.; Wagner, S.; Schädlich, P.; Speck, F.; Kataria, S.; Haraldsson, T.; Seyller, T.; Lemme, M. C.; Niklaus, F. Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure. Sci. Adv. 2018, 4, eaar5170.

[34]

Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon, S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.

[35]

Wang, J. H.; Xu, X. Z.; Qiao, R. X.; Liang, J.; Liu, C.; Zheng, B. H.; Liu, L.; Gao, P.; Jiao, Q. Z.; Yu, D. P. et al. Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching. Nano Res. 2018, 11, 4082–4089.

[36]

Karvonen, L.; Säynätjoki, A.; Huttunen, M. J.; Autere, A.; Amirsolaimani, B.; Li, S. S.; Norwood, R. A.; Peyghambarian, N.; Lipsanen, H.; Eda, G. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 2017, 8, 15714.

[37]

Rong, Y. M.; He, K.; Pacios, M.; Robertson, A. W.; Bhaskaran, H.; Warner, J. H. Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide for direct optical imaging. ACS Nano 2015, 9, 3695–3703.

[38]

Roy, S.; Ansari, K. J.; Jampa, S. S. K.; Vutukuri, P.; Mukherjee, R. Influence of substrate wettability on the morphology of thin polymer films spin-coated on topographically patterned substrates. ACS Appl. Mater. Interfaces 2012, 4, 1887–1896.

[39]

Liu, H.; Qi, G. P.; Tang, C. S.; Chen, M. L.; Chen, Y.; Shu, Z. W.; Xiang, H. Y.; Jin, Y. Y.; Wang, S. S.; Li, H. M. et al. Growth of large-area homogeneous monolayer transition-metal disulfides via a molten liquid intermediate process. ACS Appl. Mater. Interfaces 2020, 12, 13174–13181.

[40]

Chae, W. H.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Dravid, V. P. Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 2017, 111, 143106.

[41]

Sahu, R.; Radhakrishnan, D.; Vishal, B.; Negi, D. S.; Sil, A.; Narayana, C.; Datta, R. Substrate induced tuning of compressive strain and phonon modes in large area MoS2 and WS2 van der Waals epitaxial thin films. J. Cryst. Growth 2017, 470, 51–57.

[42]

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

[43]

Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res. 2019, 12, 149–157.

[44]

Suleman, M.; Lee, S.; Kim, M.; Nguyen, V. H.; Riaz, M.; Nasir, N.; Kumar, S.; Park, H. M.; Jung, J.; Seo, Y. NaCl-assisted temperature-dependent controllable growth of large-area MoS2 crystals using confined-space CVD. ACS Omega 2022, 7, 30074–30086.

[45]

Li, D. W.; Xiao, Z. Y.; Mu, S.; Wang, F.; Liu, Y.; Song, J. F.; Huang, X.; Jiang, L. J.; Xiao, J.; Liu, L. et al. A facile space-confined solid-phase sulfurization strategy for growth of high-quality ultrathin molybdenum disulfide single crystals. Nano Lett. 2018, 18, 2021–2032.

[46]

Zhou, S. S.; Gan, L.; Wang, D. L.; Li, H. Q.; Zhai, T. Y. Space-confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909–2931.

[47]

Suzuki, H.; Hashimoto, R.; Misawa, M.; Liu, Y. J.; Kishibuchi, M.; Ishimura, K.; Tsuruta, K.; Miyata, Y.; Hayashi, Y. Surface diffusion-limited growth of large and high-quality monolayer transition metal dichalcogenides in confined space of microreactor. ACS Nano 2022, 16, 11360–11373.

[48]

Taborda, J. A. P.; Landázuri, H. R.; Londoño, L. P. V. Correlation between optical, morphological, and compositional properties of aluminum nitride thin films by pulsed laser deposition. IEEE Sens. J. 2016, 16, 359–364.

[49]

Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

[50]

Chiou, B. S.; Lee, J. H. Etching of r. f. magnetron-sputtered indium tin oxide films. J. Mater. Sci. Mater. Electron. 1996, 7, 241–246.

[51]

Pinto, R. M. R.; Gund, V.; Calaza, C.; Nagaraja, K. K.; Vinayakumar, K. B. Piezoelectric aluminum nitride thin-films: A review of wet and dry etching techniques. Microelectron. Eng. 2022, 257, 111753.

[52]

Ahn, H.; Moon, G.; Jung, H. G.; Deng, B. C.; Yang, D. H.; Yang, S.; Han, C.; Cho, H.; Yeo, Y.; Kim, C. J. et al. Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotechnol. 2024, 19, 955–961.

[53]

Su, L. Q.; Zhang, Y.; Yu, Y. F.; Cao, L. Y. Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale 2014, 6, 4920–4927.

[54]

Su, L. Q.; Yu, Y. F.; Cao, L. Y.; Zhang, Y. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res. 2015, 8, 2686–2697.

[55]

Anasori, B.; Shi, C. Y.; Moon, E. J.; Xie, Y.; Voigt, C. A.; Kent, P. R. C.; May, S. J.; Billinge, S. J. L.; Barsoum, M. W.; Gogotsi, Y. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 2016, 1, 227–234.

[56]

Liu, Y. Y.; Stradins, P.; Wei, S. H. Air passivation of chalcogen vacancies in two-dimensional semiconductors. Angew. Chem. 2016, 128, 977–980.

[57]

Grünleitner, T.; Henning, A.; Bissolo, M.; Zengerle, M.; Gregoratti, L.; Amati, M.; Zeller, P.; Eichhorn, J.; Stier, A. V.; Holleitner, A. W. et al. Real-time investigation of sulfur vacancy generation and passivation in monolayer molybdenum disulfide via in situ X-ray photoelectron spectromicroscopy. ACS Nano 2022, 16, 20364–20375.

[58]

Bussolotti, F.; Kawai, H.; Maddumapatabandi, T. D.; Fu, W.; Khoo, K. H.; Goh, K. E. J. Role of S-vacancy concentration in air oxidation of WS2 single crystals. ACS Nano 2024, 18, 8706–8717.

Nano Research
Article number: 94907242
Cite this article:
Yang Q, Li D, Shi F, et al. Synthesis of monolayer tungsten nitride: Rapid optical visualization and electrical impact of grain boundaries. Nano Research, 2025, 18(3): 94907242. https://doi.org/10.26599/NR.2025.94907242
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return