PDF (16 MB)
Collect
Submit Manuscript
Research Article | Open Access

Promoting mechanism of the Ru-integration effect in RuCo bimetallic nanoparticles for enhancing water splitting performance

Mengtian HuoYifan LiQianyu LiXinye ZhangXinran SunHuiying WangZihao Xing ()Jinfa Chang ()
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
Show Author Information

Graphical Abstract

View original image Download original image
RuCo bimetallic nanoparticles with atomically-dispersed Ru supported on nitrogen-doped carbon were synthesized. The atomically-dispersed Ru not only acts as the main active site for the hydrogen evolution reaction but also promotes the Co surface to become more prone to oxidation into CoOOH*, thus acting as a high-activity site for the oxygen evolution reaction.

Abstract

The development of electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is crucial for sustainable energy and environmental initiatives. This work establishes an atomically-dispersed Ru-based model to investigate the promoting mechanism by the Ru-Integration effect in RuCo bimetallic nanoparticles supported on nitrogen-doped carbon (RuCo@NC). Specially, the Ru content in RuCo@NC plays a vital role for both HER and OER. The optimized catalyst shows an outstanding performance, requiring only 217 and 97 mV overpotential to reach a current density of 10 mA·cm−2 for OER and HER respectively in alkaline conditions. Combined with advanced characterizations such as spherical aberration-corrected scanning transmission electron microscopy, X-ray absorption spectroscopy, in-situ Raman spectroscopy, and density functional theory calculations, it is found that Ru plays multiple crucial roles: (1) Ru restricts the growth of large Co NPs, while the small-sized Co NPs facilitate the formation of carbon nanotubes, which significantly enhances the mass/electron transfer; (2) Ru not only tunes the surface properties of Co but also acts as an active site for HER. As a result, when using RuCo@NC as an overall water splitting catalyst, it only needs a potential of 1.62 V to reach a current density of 100 mA·cm−2. This work offers valuable insights into designing Ru-based electrocatalysts for water splitting.

Electronic Supplementary Material

Download File(s)
7243_ESM.pdf (2.6 MB)

References

[1]

Lu, S. Y.; Huang, B. L.; Sun, M. Z.; Luo, M. C.; Jin, M.; Yang, H. W.; Zhang, Q. H.; Liu, H.; Zhou, P.; Chao, Y. G. et al. Synthetic tuning stabilizes a high-valence Ru single site for efficient electrolysis. Nat. Synth. 2024, 3, 576–585.

[2]

Luo, M. C.; Yang, Y.; Guo, S. J. Core–shell architecture advances oxygen electrocatalysis. Chem 2019, 5, 260–262.

[3]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[4]

Zhou, Y.; Guo, S. J. Recent advances in cathode catalyst architecture for lithium-oxygen batteries. eScience 2023, 3, 100123.

[5]

Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.

[6]

Liu, C.; Mei, B. B.; Shi, Z. P.; Jiang, Z.; Ge, J. J.; Xing, W.; Song, P.; Xu, W. L. Operando formation of highly efficient electrocatalysts induced by heteroatom leaching. Nat. Commun. 2024, 15, 242.

[7]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[8]

Zhou, C. H.; Shi, J.; Dong, Z. Q.; Zeng, L. Y.; Chen, Y.; Han, Y.; Li, L.; Zhang, W. Y.; Zhang, Q. H.; Gu, L. et al. Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer. Nat. Commun. 2024, 15, 6741.

[9]

Liang, X.; Shi, L.; Liu, Y. P.; Chen, H.; Si, R.; Yan, W. S.; Zhang, Q.; Li, G. D.; Yang, L.; Zou, X. X. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 7631–7635.

[10]

Shi, Z. P.; Wang, Z. A.; Wu, H. X.; Xiao, M. L.; Liu, C. P.; Xing, W. High-density Ir single sites from rapid ligand transformation for efficient water electrolysis. Chin. J. Catal. 2024, 66, 223–232.

[11]
Wang, Y.; Yan, H. J.; Fu, H. G. Recent advances and modulation tactics in Ru- and Ir-based electrocatalysts for PEMWE anodes at large current densities. eScience, in press, DOI: 10.1016/j.esci.2024.100323.
[12]

Han, C.; Mei, B. B.; Zhang, Q. H.; Zhang, H. M.; Yao, P. F.; Song, P.; Gong, X.; Cui, P. X.; Jiang, Z.; Gu, L. et al. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction. Chin. J. Catal. 2023, 51, 80–89.

[13]

Zhou, Y. N.; Sheng, L.; Chen, L. L.; Zhao, W. H.; Zhang, W. H.; Yang, J. L. Metal and ligand modification modulates the electrocatalytic HER, OER, and ORR activity of 2D conductive metal-organic frameworks. Nano Res. 2024, 17, 7984–7990.

[14]

Li, Z. M.; Li, X. Y.; Ma, H. Q.; Ye, C. L.; Yu, H.; Nie, L.; Zheng, M.; Wang, J. Anchoring Ru clusters to highly defective N-doped carbon nanotubes via a thermal-shock strategy for stable industrial hydrogen evolution. Nano Res. 2024, 17, 5261–5269.

[15]

McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

[16]

Ma, R. O.; Wang, Y.; Li, G. Q.; Yang, L.; Liu, S. W.; Jin, Z.; Zhao, X.; Ge, J. J.; Xing, W. Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Res. 2021, 14, 4321–4327.

[17]

Du, N. Y.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-exchange membrane water electrolyzers. Chem. Rev. 2022, 122, 11830–11895.

[18]

Zhang, J. Y.; Xia, C.; Wang, H. F.; Tang, C. Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 2022, 67, 432–450.

[19]

Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012–1023.

[20]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[21]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[22]

Wang, P. C.; Yang, Y.; Zheng, W.; Cheng, Z. Y.; Wang, C. L.; Chen, S.; Wang, D. D.; Yang, J. H.; Shi, H. D.; Meng, P. et al. V–O species-doped carbon frameworks loaded with Ru nanoparticles as highly efficient and CO-tolerant catalysts for alkaline hydrogen oxidation. J. Am. Chem. Soc. 2023, 145, 27867–27876.

[23]

Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

[24]

Gong, L.; Xia, F. J.; Zhu, J. W.; Mu, X. Q.; Chen, D.; Zhao, H. Y.; Chen, L.; Mu, S. C. Hydrogen evolution reactivity of pentagonal carbon rings and p-d orbital hybridization effect with Ru. Angew. Chem., Int. Ed. 2024, 63, e202411125.

[25]

Huo, M. T.; Sun, J. H.; Liu, W.; Li, Q. Y.; Chang, J. F.; Xing, Z. H. Sulfur and nitrogen dual-doped graphdiyne as a highly efficient metal-free electrocatalyst for the Zn-air battery. Sci. China Mater. 2024, 67, 4005–4012.

[26]

Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

[27]

Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[28]

Chang, J. F.; Wang, G. Z.; Chang, X. X.; Yang, Z. Z.; Wang, H.; Li, B. Y.; Zhang, W.; Kovarik, L.; Du, Y. G.; Orlovskaya, N. et al. Interface synergism and engineering of Pd/Co@N–C for direct ethanol fuel cells. Nat. Commun. 2023, 14, 1346.

[29]

Tao, L.; Lin, C. Y.; Dou, S.; Feng, S.; Chen, D. W.; Liu, D. D.; Huo, J.; Xia, Z. H.; Wang, S. Y. Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 2017, 41, 417–425.

[30]

Liu, M; Dong, H. X.; Wang, G. L.; Zhao, J. Enhancing zinc–air flow batteries: Single-atom catalysis within cobalt-encapsulated carbon nanotubes for superior efficiency. Nano Lett. 2024, 24, 12102–12110.

[31]

Song, X. K.; Jiang, Y.; Cheng, F.; Earnshaw, J.; Na, J.; Li, X. P.; Yamauchi, Y. Hollow carbon-based nanoarchitectures based on ZIF: Inward/outward contraction mechanism and beyond. Small 2021, 17, 2004142.

[32]

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

[33]

Yin, Y. C.; Liu, X. F.; Wei, X. J.; Yu, R. H.; Shui, J. L. Porous CNTs/Co composite derived from zeolitic imidazolate framework: A lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2016, 8, 34686–34698.

[34]

Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

[35]

Wang, X. X.; Prabhakaran, V.; He, Y. H.; Shao, Y. Y.; Wu, G. Iron-free cathode catalysts for proton-exchange-membrane fuel cells: Cobalt catalysts and the peroxide mitigation approach. Adv. Mater. 2019, 31, 1805126.

[36]

Shao, S.; Yang, Y.; Sun, K. J.; Yang, S. T.; Li, A.; Yang, F.; Luo, X. R.; Hao, S. J.; Ke, Y. C. Electron-rich ruthenium single-atom alloy for aqueous levulinic acid hydrogenation. ACS Catal. 2021, 11, 12146–12158.

[37]

He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

[38]

Pan, Y. J.; Wang, Z. C.; Wang, K. X.; Ye, Q.; Shen, B. S.; Yang, F. S.; Cheng, Y. L. Dual doping of B and Fe activated lattice oxygen participation for enhanced oxygen evolution reaction activity in alkaline freshwater and seawater. Adv. Funct. Mater. 2024, 34, 2402264.

[39]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[40]

Zhu, Y. M.; Klingenhof, M.; Gao, C. L.; Koketsu, T.; Weiser, G.; Pi, Y. C.; Liu, S. H.; Sui, L.; Hou, J. R.; Li, J. Y. et al. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping. Nat. Commun. 2024, 15, 1447.

[41]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[42]

Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914.

[43]

Li, X. Y.; Jiao, D. X.; Zhao, X. A comprehensive descriptor for understanding high-shell heteroatom-tuned oxygen reduction reaction activity on diatomic FeCoN6 sites. Renewables 2024, 2, 242–249.

Nano Research
Article number: 94907243
Cite this article:
Huo M, Li Y, Li Q, et al. Promoting mechanism of the Ru-integration effect in RuCo bimetallic nanoparticles for enhancing water splitting performance. Nano Research, 2025, 18(3): 94907243. https://doi.org/10.26599/NR.2025.94907243
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return