Single-atom catalysts (SACs) are considered as the most promising nonprecious metal alternatives for oxygen reduction reactions (ORR) in proton exchange membrane fuel cells because of their high atomic utilization and excellent catalytic performance. However, the inadequate activity and long-term stability of SACs under operational conditions significantly hinder their practical application. Therefore, this paper focuses on understanding the micro- and electronic structures that synergistically enable the activity and stability of oxygen reduction. It provides a comprehensive summary of the effects for improving the ORR catalytic activity and stability of SACs from a multilevel, multi-angle perspective, including macroscale adjustments to the overall catalyst structure, nanoscale optimization of the catalyst microstructure, and atomic-scale regulation of the active sites. Additionally, it emphasizes the importance of advanced simulation, computational methods, and characterization techniques in understanding the catalytic and degradation mechanisms of SACs during the ORR process. This review aims to provide a theoretical foundation for the synergistic catalytic mechanisms and long-term stable operation of catalytic sites in complex heterogeneous environments, thereby advancing research on low-cost, high-efficiency, and highly stable single-atom catalysts.
Huang, X. J.; Zhao, W. W.; Shao, Z. G.; Chen, L. Q. Development strategies for new energy materials in China. Strategic Study CAE 2020, 22, 60–67.
Peng, S. P. Current status and future prospects of fuel cells in China. Engineering 2023, 21, 20–23.
Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.
Thompson, S. T.; Wilson, A. R.; Zelenay, P.; Myers, D. J.; More, K. L.; Neyerlin, K. C.; Papageorgopoulos, D. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ion. 2018, 319, 68–76.
Luo, E. G.; Chu, Y. Y.; Liu, J.; Shi, Z. P.; Zhu, S. Y.; Gong, L. Y.; Ge, J. J.; Choi, C. H.; Liu, C. P.; Xing, W. Pyrolyzed M–N x catalysts for oxygen reduction reaction: Progress and prospects. Energy Environ. Sci. 2021, 14, 2158–2185.
Zhou, R. F.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Determination of the electron transfer number for the oxygen reduction reaction: From theory to experiment. ACS Catal. 2016, 6, 4720–4728.
Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P. On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 2016, 138, 635–640.
Dai, S.; Chou, J. P.; Wang, K. W.; Hsu, Y. Y.; Hu, A.; Pan, X. Q.; Chen, T. Y. Platinum-trimer decorated cobalt-palladium core–shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 2019, 10, 440.
Chen, T.; Qiu, C. Y.; Zhang, X. K.; Wang, H. C.; Song, J.; Zhang, K.; Yang, T. H.; Zuo, Y. X.; Yang, Y. L.; Gao, C. et al. An ultrasmall ordered high-entropy intermetallic with multiple active sites for the oxygen reduction reaction. J. Am. Chem. Soc. 2024, 146, 1174–1184.
Nie, Y.; Sun, Y. J.; Song, B. Y.; Meyer, Q.; Liu, S. Y.; Guo, H. Y.; Tao, L.; Lin, F. X.; Luo, M. C.; Zhang, Q. H. et al. Low-electronegativity Mn-contraction of PtMn nanodendrites boosts oxygen reduction durability. Angew. Chem., Int. Ed. 2024, 63, e202317987.
Yang, L. T.; Bai, J. S.; Zhang, N. S.; Jiang, Z.; Wang, Y.; Xiao, M. L.; Liu, C. P.; Zhu, S. Y.; Xu, Z. J.; Ge, J. J. et al. Rare earth evoked subsurface oxygen species in platinum alloy catalysts enable durable fuel cells. Angew. Chem., Int. Ed. 2024, 63, e202315119.
Jaouen, F.; Dodelet, J. P. O2 reduction mechanism on non-noble metal catalysts for PEM fuel cells. Part I: Experimental rates of O2 electroreduction, H2O2 electroreduction, and H2O2 disproportionation. J. Phys. Chem. C 2009, 113, 15422–15432.
Wei, K.; Wang, X.; Ge, J. J. PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: Active sites and activity enhancement. Energy Mater. 2023, 3, 300051.
Gao, J. J.; Tao, H. B.; Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2021, 33, 2003786.
Cui, P. B.; Zhao, L. J.; Long, Y. D.; Dai, L. M.; Hu, C. G. Carbon-based electrocatalysts for acidic oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202218269.
Zhai, Q. F.; Huang, H. T. S.; Lawson, T.; Xia, Z. H.; Giusto, P.; Antonietti, M.; Jaroniec, M.; Chhowalla, M.; Baek, J. B.; Liu, Y. et al. Recent advances on carbon-based metal-free electrocatalysts for energy and chemical conversions. Adv. Mater. 2024, 36, 2405664.
Hu, C. G.; Paul, R.; Dai, Q. B.; Dai, L. M. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 2021, 50, 11785–11843.
Wu, G.; Zelenay, P. Activity versus stability of atomically dispersed transition-metal electrocatalysts. Nat. Rev. Mater. 2024, 9, 643–656.
Wang, T. Z.; Sun, Y. H.; Fu, G. Y.; Jiang, Z. Q.; Zheng, X. R.; Li, J. H.; Deng, Y. D. Progress of main-group metal-based single-atom catalysts. Electrochem. Energy Rev. 2024, 7, 29.
Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.
Jiang, F.; Zhou, Z. Y.; Zhang, C.; Feng, C.; Xiong, G. Y.; Wang, Y. X.; Fei, Z. Y.; Liu, Y. Q.; Pan, Y. Structural regulation of single-atom catalysts for enhanced catalytic oxidation performance of volatile organic compounds. Nano Res. 2023, 16, 1967–1983.
Zhang, L.; Meng, Q. L.; Zheng, R. X.; Wang, L. Q.; Xing, W.; Cai, W. W.; Xiao, M. L. Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano Res. 2023, 16, 4468–4487.
Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.
He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.
Yu, J. M.; Su, C. L.; Shang, L.; Zhang, T. R. Single-atom-based oxygen reduction reaction catalysts for proton exchange membrane fuel cells: Progress and perspective. ACS Nano 2023, 17, 19514–19525.
Dong, F.; Wu, M. J.; Chen, Z. S.; Liu, X. H.; Zhang, G. X.; Qiao, J. L.; Sun, S. H. Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: Recent advances and future perspectives. Nano-Micro Lett. 2022, 14, 36.
Li, L. B.; Huang, B. Y.; Tang, X. N.; Hong, Y. S.; Zhai, W. J.; Hu, T.; Yuan, K.; Chen, Y. W. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 2021, 31, 2103857.
Qi, Z. J.; Zhou, Y.; Guan, R. N.; Fu, Y. S.; Baek, J. B. Tuning the coordination environment of carbon-based single-atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis. Adv. Mater. 2023, 35, 2210575.
Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.
Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.
Gao, Y.; Wang, D. S. Atomically dispersed catalysts: Precise synthesis, structural regulation, and structure–activity relationship. CCS Chem. 2023, 6, 833–855.
Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.
Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem. 2024, 42, 2520–2535.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Liang, C.; Zhang, T. Y.; Sun, S. L.; Han, A. J.; Qiu, Z. H.; Xu, H. J.; Liu, J. F. Yolk–shell FeCu/NC electrocatalyst boosting high-performance zinc-air battery. Nano Res. 2024, 17, 7918–7925.
Palm, I.; Sibul, R.; Kibena-Põldsepp, E.; Mooste, M.; Lilloja, J.; Käärik, M.; Kozlova, J.; Kikas, A.; Treshchalov, A.; Leis, J. et al. ZIF-8 derived iron-, sulphur-, and nitrogen-doped catalysts for anion-exchange membrane fuel cell application. Renew. Energy 2024, 228, 120613.
Fu, C.; Qi, X. Q.; Zhao, L.; Yang, T. T.; Xue, Q.; Zhu, Z. Z.; Xiong, P.; Jiang, J. X.; An, X. G.; Chen, H. Y. et al. Synergistic cooperation between atomically dispersed Zn and Fe on porous nitrogen-doped carbon for boosting oxygen reduction reaction. Appl. Catal. B: Environ. 2023, 335, 122875.
Chi, B.; Zhang, L. H.; Yang, X. X.; Zeng, Y. C.; Deng, Y. J.; Liu, M. R.; Huo, J. L.; Li, C. Z.; Zhang, X. R.; Shi, X. D. et al. Promoting ZIF-8-derived Fe–N–C oxygen reduction catalysts via Zr doping in proton exchange membrane fuel cells: Durability and activity enhancements. ACS Catal. 2023, 13, 4221–4230.
Han, J. X.; Meng, X. Y.; Lu, L.; Bian, J. J.; Li, Z. P.; Sun, C. W. Single-atom Fe-N x -C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872.
Li, J. J.; Xia, W.; Xu, X. T.; Jiang, D.; Cai, Z. X.; Tang, J.; Guo, Y. N.; Huang, X. L.; Wang, T.; He, J. P. et al. Selective etching of metal-organic frameworks for open porous structures: Mass-efficient catalysts with enhanced oxygen reduction reaction for fuel cells. J. Am. Chem. Soc. 2023, 145, 27262–27272.
Li, J. Q.; Wen, Z. H.; Xu, Q. H.; Chen, K.; Zhang, T.; Wu, J.; Ci, S. Q. N-doped carbon networks as bifunctional electrocatalyst toward integrated electrochemical devices for Zn-air batteries driving microbial CO2 electrolysis cell. J. CO2 Util. 2022, 62, 102068.
Wang, R.; Yang, H. C.; Lu, N. D.; Lei, S. L.; Jia, D. L.; Wang, Z. X.; Liu, Z. H.; Wu, X. G.; Zheng, H. Z.; Ali, S. et al. Precise identification of active sites of a high bifunctional performance 3D Co/N-C catalyst in zinc-air batteries. Chem. Eng. J. 2022, 433, 134500.
Guo, C. Z.; Li, Y. R.; Liao, W. L.; Liu, Y.; Li, Z. B.; Sun, L. T.; Chen, C. G.; Zhang, J.; Si, Y. J.; Li, L. Boosting the oxygen reduction activity of a three-dimensional network Co–N–C electrocatalyst via space-confined control of nitrogen-doping efficiency and the molecular-level coordination effect. J. Mater. Chem. A 2018, 6, 13050–13061.
Zhao, S. L.; Yang, J.; Han, M.; Wang, X. M.; Lin, Y.; Yang, R.; Xu, D. D.; Shi, N. E.; Wang, Q.; Yang, M. J. et al. Synergistically enhanced oxygen reduction electrocatalysis by atomically dispersed and nanoscaled Co species in three-dimensional mesoporous Co, N-codoped carbon nanosheets network. Appl. Catal. B: Environ. 2020, 260, 118207.
Zhao, L.; Sui, X. L.; Li, J. Z.; Zhang, J. J.; Zhang, L. M.; Huang, G. S.; Wang, Z. B. Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation. Appl. Catal. B: Environ. 2018, 231, 224–233.
Guo, B. W.; Wang, Z. K.; Zheng, L.; Mo, G.; Zhou, H. J.; Luo, D. Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy. Carbon Energy 2024, 6, e554.
Zhang, P.; Chen, H. C.; Zhu, H. Y.; Chen, K.; Li, T. Y.; Zhao, Y. L.; Li, J. Y.; Hu, R. B.; Huang, S. Y.; Zhu, W. et al. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat. Commun. 2024, 15, 2062.
Liu, J. P.; Li, G. J.; Xu, C. L.; Chen, H. D.; Jin, R.; Sun, L. T.; Shu, C. Y.; Chen, H. F.; Guo, C. Z.; Li, H. L. et al. Designing Ce single-atom-sites coupled with CeO2 nanoparticles for oxygen reduction enhancement. Inorg. Chem. Front. 2023, 10, 3091–3102.
Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater. 2022, 45, 805–813.
Zhang, Z.; Wang, T. P.; Wang, W. W.; Wang, X. N.; Luo, X. L.; Cheng, C.; Liu, X. K. A stable imide-linked metalphthalocyanine framework with atomically dispersed Fe-N4 sites and ultrafine nickel oxide nanoparticles to boost reversible oxygen electrocatalysis with a record-low Δ E of 0.59. Adv. Energy Mater. 2023, 13, 2300325.
Hao, Y. X.; Kang, Y. M.; Kang, H. C.; Xin, H. Y.; Liu, F. Q.; Li, L. F.; Wang, W.; Lei, Z. Q. Self-grown layered double hydroxide nanosheets on bimetal-organic frameworks-derived N-doped CoO x carbon polyhedra for flexible all-solid-state rechargeable Zn-air batteries. J. Power Sources 2022, 524, 231076.
Xu, C. L.; Si, Y. J.; Hu, B. B.; Xu, X. R.; Hu, B. H.; Jiang, Y.; Chen, H. F.; Guo, C. Z.; Li, H. L.; Chen, C. G. Promoting oxygen reduction via crafting bridge-bonded oxygen ligands on a single-atom iron catalyst. Inorg. Chem. Front. 2022, 9, 3306–3318.
Liu, J. P.; Guo, C. Z.; Sun, L. T.; Liu, Y.; Chen, H. D.; Shu, C. Y.; Dai, J. Y.; Xu, C. L.; Jin, R.; Li, H. L. et al. Unraveling the electron transfer effect of single-metal Ce-N4 sites via mesopore-coupling for boosted oxygen reduction activity. Small 2024, 20, 2305615.
Zheng, Y. B.; Zhu, G. H.; Li, G. C.; Guo, H.; Li, Z.; Han, X. M.; Li, J. S.; Dong, L.; Zang, J. B.; Wang, Y. H. Fe, Ni doped carbon nanofibers as dual functional electrocatalyst prepared by in-situ grown SiO2-protected in nanoconfinement. Diam. Relat. Mater. 2024, 142, 110761.
Kim, J.; Lee, T.; Jung, H. D.; Kim, M.; Eo, J.; Kang, B.; Jung, H.; Park, J.; Bae, D.; Lee, Y. et al. Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction. Nat. Commun. 2024, 15, 192.
Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe–N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.
Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv. 2022, 8, eabn5091.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.
Qin, Y.; Guo, C. Z.; Ou, Z. H.; Xu, C. L.; Lan, Q.; Jin, R.; Liu, Y.; Niu, Y. C.; Xu, Q.; Si, Y. J. et al. Regulating single-atom Mn sites by precisely axial pyridinic-nitrogen coordination to stabilize the oxygen reduction. J. Energy Chem. 2023, 80, 542–552.
Yang, L. F.; Du, C. L.; Tian, J. C.; Yao, X. Y.; Zhang, Q. W.; Ma, X. L.; Zhu, Y. Q.; Zou, M. S.; Cao, C. B. Fully exposed copper single-atom sites on mesoporous N/S-codoped graphene for efficient zinc-air battery. Appl. Catal. B: Environ. 2024, 355, 124190.
Zhang, Z. X.; Wang, Y.; Guan, J. Q.; Zhang, T. T.; Li, P. H.; Hao, Y.; Duan, L. M.; Niu, Z. Q.; Liu, J. H. Direct conversion of solid g-C3N4 into metal-ended N-doped carbon nanotubes for rechargeable Zn-air batteries. Inorg. Chem. Front. 2022, 9, 3428–3435.
Shi, W. H.; Li, Z. Z.; Gong, Z. H.; Liang, Z. H.; Liu, H. W.; Han, Y. C.; Niu, H. T.; Song, B.; Chi, X. D.; Zhou, J. H. et al. Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nat. Commun. 2023, 14, 2294.
Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J. J.; Sun, B.; Fan, Q. H.; Shao, G. J.; Chen, C.; Liu, H. et al. High durability of Fe–N–C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 2023, 35, 2210714.
Jiang, R.; Qiao, Z. L.; Xu, H. X.; Cao, D. P. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction. Chin. J. Catal. 2023, 48, 224–234.
Zhu, Y. M.; Liu, X.; Jin, S. G.; Chen, H. J.; Lee, W.; Liu, M. L.; Chen, Y. Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. J. Mater. Chem. A 2019, 7, 5875–5897.
Li, W.; Wang, D. D.; Zhang, Y. Q.; Tao, L.; Wang, T. H.; Zou, Y. Q.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.
Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.
Jia, Y.; Yao, X. D. Defects in carbon-based materials for electrocatalysis: Synthesis, recognition, and advances. Acc. Chem. Res. 2023, 56, 948–958.
Zhao, Z. Y.; Xiong, Y. P.; Yu, S.; Fang, T. W.; Yi, K.; Yang, B.; Zhang, Y. W.; Yang, X. D.; Liu, X. H.; Jia, X. Single-atom Zn with nitrogen defects on biomimetic 3D carbon nanotubes for bifunctional oxygen electrocatalysis. J. Colloid Interface Sci. 2023, 650, 934–942.
Li, N.; Li, M. Y.; Guo, K.; Guo, Z. Q.; Wang, R. J.; Bao, L. P.; Hou, G. L.; Lu, X. Deciphering the role of native defects in dopant-mediated defect engineering of carbon electrocatalysts. Adv. Energy Mater. 2024, 14, 2401008.
Zhang, Y. T.; Jiang, Y.; Jiang, G. P.; Or, T.; Gao, R.; Zhang, H. Z.; Bai, Z. Y.; Chen, N.; Deng, Y. P.; Chen, Z. W. Ordered mesoporous Fe2N x electrocatalysts with regulated nitrogen vacancy for oxygen reduction reaction and Zn-air battery. Nano Energy 2023, 115, 108672.
Chang, H.; Liu, X. Y.; Zhao, S.; Liu, Z. L.; Lv, R. T.; Zhang, Q. Y.; Yi, T. F. Self-assembled 3D N/P/S-tridoped carbon nanoflower with highly branched carbon nanotubes as efficient bifunctional oxygen electrocatalyst toward high-performance rechargeable Zn-air batteries. Adv. Funct. Mater. 2024, 34, 2313491.
Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.
Liu, Y. F.; Zong, L. B.; Zhang, Y. Y.; Lu, F. H.; Wang, L. Joule heating synthesis for single-atomic Fe sites on porous carbon spheres and armchair-type edge defect engineering dominated oxygen reduction reaction performance. Appl. Catal. B: Environ. 2025, 361, 124673.
Chen, X.; Pu, J.; Hu, X. H.; An, L.; Jiang, J. J.; Li, Y. J. Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn-air battery. Nano Res. 2022, 15, 9000–9009.
Lai, Q. X.; Zheng, J.; Tang, Z. M.; Bi, D.; Zhao, J. X.; Liang, Y. Y. Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 11999–12006.
Yang, T. T.; Huang, Y.; Yang, L.; Li, X. Y.; Wang, X. J.; Zhang, G. Z.; Luo, Y.; Jiang, J. Protecting single atom catalysts with graphene/carbon-nitride “chainmail”. J. Phys. Chem. Lett. 2019, 10, 3129–3133.
Liu, S. W.; Li, C. Z.; Zachman, M. J.; Zeng, Y. C.; Yu, H. R.; Li, B. Y.; Wang, M. Y.; Braaten, J.; Liu, J. W.; Meyer, H. M. et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 2022, 7, 652–663.
Wang, B.; Srinivas, K.; Liu, Y. F.; Liu, D. W.; Zhang, X. J.; Zhang, W. L.; Chen, Y. F. N-doped CNTs capped with carbon layer armored CoFe alloy as highly stable bifunctional catalyst for oxygen electrocatalysis. Nano Res. 2022, 15, 3971–3979.
Qiao, L.; Wang, X. K.; Xu, R.; Zhang, C. H.; Chen, K. Y.; Tong, K. C.; Wang, H. L.; Dai, S. X.; Chu, L.; Huang, M. H. Nitrogen-doped carbon shell armored ‘Janus’ Co/Co9S8 heterojunction as robust bi-functional oxygen reduction reaction/oxygen evolution reaction catalysts in seawater-based rechargeable Zn-air batteries. Mater. Today Energy 2023, 37, 101398.
Na, G.; Hwang, W.; Shin, H.; Park, S.; Park, J. E.; Lee, J.; Shin, Y.; Choi, H.; Shim, J.; Yeom, K. et al. Durable and active nitrogen-coordinated iron single-atom catalyst for proton exchange membrane fuel cells through carbon encapsulation. Adv. Energy Mater. 2024, 14, 2400565.
Chen, S. R.; Liu, X.; Sun, H.; Cao, Z. Y.; Xiong, J. B.; Li, Y. Q. Facile synthesis of carbon coated cobalt-cobalt molybdenum carbide as advanced bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. J. Alloy. Compd. 2022, 897, 163203.
Cui, L. X.; Fan, K. C.; Zong, L. B.; Lu, F. H.; Zhou, M.; Li, B.; Zhang, L. C.; Feng, L. Y.; Li, X.; Chen, Y. N. et al. Sol–gel pore-sealing strategy imparts tailored electronic structure to the atomically dispersed Ru sites for efficient oxygen reduction reaction. Energy Storage Mater. 2022, 44, 469–476.
Wang, Z. Z.; Zhou, X. Z.; Jin, H. H.; Chen, D.; Zhu, J. W.; Hempelmann, R.; Chen, L.; Mu, S. C. Ionic liquid-derived FeCo alloys encapsulated in nitrogen-doped carbon framework as advanced bifunctional catalysts for rechargeable Zn-air batteries. J. Alloy. Compd. 2022, 908, 164565.
Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.
Wang, X. C.; Kang, Z. W.; Wang, D.; Zhao, Y. F.; Xiang, X.; Shang, H. S.; Zhang, B. Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis. Nano Energy 2024, 121, 109268.
Wang, L. L.; Mei, Z. Y.; An, Q.; Sheng, X. L.; Jing, Q.; Huang, W. J.; Wang, X. F.; Zou, X. X.; Guo, H. Modulating the electronic spin state of atomically dispersed iron sites by adjacent zinc atoms for enhanced spin-dependent oxygen electrocatalysis. Chem Catal. 2023, 3, 100758.
Wang, L. L.; An, Q.; Sheng, X. L.; Mei, Z. Y.; Jing, Q.; Zhao, X. Y.; Xu, Q. J.; Duan, L. Y.; Zou, X. X.; Guo, H. Modulation of electronic spin state and construction of dual-atomic tandem reaction for enhanced pH-universal oxygen reduction. Appl. Catal. B: Environ. 2024, 343, 123509.
Zhang, Z. R.; Ma, P. Y.; Luo, L.; Ding, X. L.; Zhou, S. M.; Zeng, J. Regulating spin states in oxygen electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202216837.
Han, X.; Chen, J. X.; He, P.; Lu, J. Harnessing spin effects for heterogeneous single-atom spin catalysis. Natl. Sci. Rev. 2024, 11, 217.
Zhao, Y. J.; Wang, H.; Li, J.; Fang, Y.; Kang, Y. S.; Zhao, T. Y.; Zhao, C. Y. Regulating the spin-state of rare-earth ce single atom catalyst for boosted oxygen reduction in neutral medium. Adv. Funct. Mater. 2023, 33, 2305268.
Qi, C. H.; Yang, H. Y.; Sun, Z. Q.; Wang, H. F.; Xu, N.; Zhu, G. H.; Wang, L. J.; Jiang, W.; Yu, X. Q.; Li, X. P. et al. Modulating electronic structures of iron clusters through orbital rehybridization by adjacent single copper sites for efficient oxygen reduction. Angew. Chem., Int. Ed. 2023, 62, e202308344.
Li, Y. Z.; Sun, H.; Ren, L. T.; Sun, K.; Gao, L. Y.; Jin, X. R.; Xu, Q. Z.; Liu, W.; Sun, X. M. Asymmetric coordination regulating D-orbital spin-electron filling in single-atom iron catalyst for efficient oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202405334.
Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.
Xie, X.; Peng, H.; Ma, G. F.; Lei, Z. Q.; Xu, Y. X. Recent progress in heteroatom doping to modulate the coordination environment of M–N–C catalysts for the oxygen reduction reaction. Mater. Chem. Front. 2023, 7, 2595–2619.
Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2302485.
Zhao, R. P.; Chen, Y.; Huang, S. M. Doping engineering on carbons as electrocatalysts for oxygen reduction reaction. Fundam. Res. 2021, 1, 807–823.
Li, Y. Q.; Ren, P. H.; Lu, X. Y.; Zhang, J. Q.; Yang, P. X.; Yang, X. X.; Wang, G. Z.; Liu, A. M.; Wu, G.; An, M. Z. Elucidating the role of P on Mn- and N-doped graphene catalysts in promoting oxygen reduction: Density functional theory studies. SusMat 2023, 3, 390–401.
Zhou, Y. Z.; Lu, R. H.; Tao, X. F.; Qiu, Z. J.; Chen, G. B.; Yang, J.; Zhao, Y.; Feng, X. L.; Müllen, K. Boosting oxygen electrocatalytic activity of Fe–N–C catalysts by phosphorus incorporation. J. Am. Chem. Soc. 2023, 145, 3647–3655.
Li, Z. J.; Ji, S. Q.; Liu, H. X.; Xu, C.; Guo, C. M.; Lu, X.; Sun, H. X.; Dou, S.; Xin, S. X.; Horton, J. H. et al. Constructing asymmetrical coordination microenvironment with phosphorus-incorporated nitrogen-doped carbon to boost bifunctional oxygen electrocatalytic activity. Adv. Funct. Mater. 2024, 34, 2314444.
Li, S. D.; Xia, L. X.; Li, J. T.; Chen, Z.; Zhang, W.; Zhu, J. X.; Yu, R. H.; Liu, F.; Lee, S.; Zhao, Y. et al. Tuning structural and electronic configuration of FeN4 via external s for enhanced oxygen reduction reaction. Energy Environ. Mater. 2024, 7, e12560.
Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.
Chen, Y. P.; Zheng, X. S.; Cai, J. Y.; Zhao, G. Q.; Zhang, B. X.; Luo, Z. X.; Wang, G. M.; Pan, H. G.; Sun, W. P. Sulfur doping triggering enhanced PT-N coordination in graphitic carbon nitride-supported Pt electrocatalysts toward efficient oxygen reduction reaction. ACS Catal. 2022, 12, 7406–7414.
Qi, Y. G.; Liang, Q.; Song, K. X.; Zhou, X. Y.; Liu, M. Q.; Li, W. W.; Liu, F. X.; Jiang, Z.; Zou, X.; Chen, Z. J. et al. Optimizing high-coordination shell of Co-based single-atom catalysts for efficient ORR and zinc-air batteries. J. Energy Chem. 2024, 95, 306–314.
He, N.; Sun, Y. M.; Chen, X. Y.; Wang, J. Q.; Liang, G. J.; Mo, F. N. Design of S, N-codoped Co–Fe dual-atom sites for efficient alkaline oxygen reduction. J. Mater. Chem. A 2024, 12, 10101–10109.
Ren, J. T.; Ying, Y. D.; Liu, Y. P.; Li, W.; Yuan, Z. Y. Charge redistribution caused by sulfur doping of bimetal FeCo phosphides supported on heteroatoms-doped graphene for Zn-air batteries with stable cycling. J. Energy Chem. 2022, 71, 619–630.
Liu, M. H.; Zhang, J.; Su, H.; Jiang, Y. L.; Zhou, W. L.; Yang, C. Y.; Bo, S. W.; Pan, J.; Liu, Q. H. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 2024, 15, 1675.
Liu, X. J.; Liu, Y. R.; Yang, W. X.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem.—Eur. J. 2022, 28, e202201471.
Yan, L. N.; Wang, C.; Wang, Y. S.; Wang, Y. H.; Wang, Z. Z.; Zheng, L. R.; Lu, Y.; Wang, R. Z.; Chen, G. Optimizing the binding of the *OOH intermediate via axially coordinated Co-N5 motif for efficient electrocatalytic H2O2 production. Appl. Catal. B: Environ. 2023, 338, 123078.
Yuan, L. J.; Liu, B.; Shen, L. X.; Dai, Y. K.; Li, Q.; Liu, C.; Gong, W.; Sui, X. L.; Wang, Z. B. d-Orbital electron delocalization realized by axial Fe4C Atomic clusters delivers high-performance Fe–N–C catalysts for oxygen reduction reaction. Adv. Mater. 2023, 35, 2305945.
Jin, Q. Y.; Wang, C. H.; Guo, Y. Y.; Xiao, Y. H.; Tan, X. H.; Chen, J. P.; He, W. D.; Li, Y.; Cui, H.; Wang, C. X. Axial oxygen ligands regulating electronic and geometric structure of Zn-N-C sites to boost oxygen reduction reaction. Adv. Sci. 2023, 10, 2302152.
Zhang, L. J.; Jin, N.; Yang, Y. B.; Miao, X. Y.; Wang, H.; Luo, J.; Han, L. L. Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: A review. Nano-Micro Lett. 2023, 15, 228.
Jia, Y. L.; Xue, Z. Q.; Yang, J.; Liu, Q. L.; Xian, J. H.; Zhong, Y. C.; Sun, Y. M.; Zhang, X. X.; Liu, Q. H.; Yao, D. X. et al. Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: Coordination environment regulation for high selectivity oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202110838.
Zheng, H. R.; Deng, D. N.; Zheng, X. R.; Chen, Y. B.; Bai, Y.; Liu, M. J.; Jiang, J. B.; Zheng, H. T.; Wang, Y. C.; Wang, J. X. et al. Highly reversible Zn-air batteries enabled by tuned valence electron and steric hindrance on atomic Fe–N4–C sites. Nano Lett. 2024, 24, 4672–4681.
Pan, Y.; Ma, X. L.; Wang, M. M.; Yang, X.; Liu, S. J.; Chen, H. C.; Zhuang, Z. W.; Zhang, Y. H.; Cheong, W. C.; Zhang, C. et al. Construction of N, P Co-doped carbon frames anchored with Fe single atoms and Fe2P nanoparticles as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2203621.
Wang, Z.; Lu, Z.; Ye, Q. T.; Yang, Z. B.; Xu, R. J.; Kong, K. X.; Zhang, Y. F.; Yan, T.; Liu, Y. P.; Pan, Z. J. et al. Construction of Fe nanoclusters/nanoparticles to engineer FeN4 sites on multichannel porous carbon fibers for boosting oxygen reduction reaction. Adv. Funct. Mater. 2024, 34, 2315150.
Dong, Y. N.; Li, H.; Mei, X. H.; Han, C.; Gong, X.; Song, P.; Xu, W. L. Synergetic effect between platinum nanoparticles and single atoms revealed in the catalytic mechanism of traditional Pt/C for the oxygen reduction reaction. ACS Appl. Energy Mater. 2024, 7, 5352–5358.
Zhang, W. Y.; Liu, C. W.; Kucernak, A.; Liu, H.; Wu, J.; Li, S. Synergizing single-atom and carbon-encapsulated nanoparticles of Fe for efficient oxygen reduction and durable Zn-air batteries. ACS Appl. Energy Mater. 2024, 7, 5398–5407.
Xu, C. L.; Guo, C. Z.; Liu, J. P.; Hu, B. H.; Dai, J. Y.; Wang, M.; Jin, R.; Luo, Z. L.; Li, H. L.; Chen, C. G. Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy Storage Mater. 2022, 51, 149–158.
Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe–N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.
Xue, D. P.; Zhao, S. Y.; Lu, B. A.; Yu, Y.; Wei, Y. F.; Yin, H. B.; Hu, J. S.; Zhang, J. N. Disentangling the activity-stability trade-off of pyrrolic N-coordinated Fe–N4 catalytic sites for long-life oxygen reduction reaction in acidic medium. Adv. Energy Mater. 2024, 14, 2303733.
Luo, G. T.; Zhu, E. Z.; Shi, C. Y.; Ren, Y. R.; Lin, Y.; Yang, X. K.; Xu, M. L. Regulating the double-site Mn2–N6 electronic structure by manganese clusters for enhanced oxygen reduction. Appl. Catal. B: Environ. 2024, 350, 123939.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Qi, J. W.; Yu, L. T.; Gan, H.; Li, H.; Guo, S. D.; Wang, D.; Chen, Z. L.; Zhao, C. M.; Han, C. P.; Cheng, H. M. OH-induced surface reconstitution in single atoms and clusters integrated electrocatalysts for self-adaptive oxygen electrocatalysis. Adv. Funct. Mater. 2024, 34, 2410700.
Wan, X.; Liu, Q. T.; Liu, J. Y.; Liu, S. Y.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Yu, R. H.; Shui, J. L. Iron atom-cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nat. Commun. 2022, 13, 2963.
Wang, S.; Chu, Y. Y.; Lan, C.; Liu, C. P.; Ge, J. J.; Xing, W. Metal-nitrogen-carbon catalysts towards acidic ORR in PEMFC: Fundamentals, durability challenges, and improvement strategies. Chem. Synth. 2023, 3, 15.
Zaman, S.; Huang, L.; Douka, A. I.; Yang, H.; You, B.; Xia, B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem., Int. Ed. 2021, 60, 17832–17852.
Zhao, Y. G.; Saseendran, D. P. A.; Huang, C.; Triana, C. A.; Marks, W. R.; Chen, H.; Zhao, H.; Patzke, G. R. Oxygen evolution/reduction reaction catalysts: From in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 2023, 123, 6257–6358.
Yin, S. H.; Yi, H. Y.; Liu, M. L.; Yang, J.; Yang, S. L.; Zhang, B. W.; Chen, L.; Cheng, X. Y.; Huang, H.; Huang, R. et al. An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions. Nat. Commun. 2024, 15, 6229.
Xu, X. L.; Zhang, X. M.; Kuang, Z. C.; Xia, Z. X.; Rykov, A. I.; Yu, S. S.; Wang, J. H.; Wang, S. L.; Sun, G. Q. Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site. Appl. Catal. B: Environ. 2022, 309, 121290.
Wang, Y. M.; Yan, H. M.; Cao, H.; Chen, J. W.; Yang, H.; Zhu, J. Y.; Sun, J. Atomic-scale understanding of electrified interfacial structures and dynamics during the oxygen reduction reaction on the Fe–N4/c electrocatalyst. ACS Catal. 2023, 13, 11080–11090.
Chen, J. W.; Zhang, Z. S.; Yan, H. M.; Xia, G. J.; Cao, H.; Wang, Y. G. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nat. Commun. 2022, 13, 1734.
Li, P.; Jiao, Y. Z.; Ruan, Y. E.; Fei, H. G.; Men, Y.; Guo, C. L.; Wu, Y. E.; Chen, S. L. Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts. Nat. Commun. 2023, 14, 6936.
Zhang, D.; Wang, Z. Y.; Liu, F. Z.; Yi, P. Y.; Peng, L. F.; Chen, Y.; Wei, L.; Li, H. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: From single- to dual-sabatier optima. J. Am. Chem. Soc. 2024, 146, 3210–3219.
Hu, X.; Chen, S. Y.; Chen, L. T.; Tian, Y.; Yao, S.; Lu, Z. Y.; Zhang, X.; Zhou, Z. What is the real origin of the activity of Fe–N–C electrocatalysts in the o2 reduction reaction. Critical roles of coordinating pyrrolic n and axially adsorbing species. J. Am. Chem. Soc. 2022, 144, 18144–18152.
Wei, X. Q.; Song, S. J.; Cai, W. W.; Luo, X.; Jiao, L.; Fang, Q.; Wang, X. S.; Wu, N. N.; Luo, Z.; Wang, H. J. et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2023, 9, 181–197.
Li, S. L.; Shi, L.; Guo, Y. J.; Wang, J. Y.; Liu, D.; Zhao, S. L. Selective oxygen reduction reaction: Mechanism understanding, catalyst design and practical application. Chem. Sci. 2024, 15, 11188–11228.
Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.
Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.
Gao, Z. R.; Li, A. W.; Ma, D.; Zhou, W. Electron energy loss spectroscopy for single atom catalysis. Top. Catal. 2022, 65, 1609–1619.
Wang, X.; An, Y.; Liu, L. F.; Fang, L. Z.; Liu, Y. N.; Zhang, J. X.; Qi, H. Y.; Heine, T.; Li, T.; Kuc, A. et al. Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202209746.
Liu, H.; Jiang, L. Z.; Khan, J.; Wang, X. X.; Xiao, J. M.; Zhang, H. D.; Xie, H. J.; Li, L. N.; Wang, S. Y.; Han, L. Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202214988.
Ji, S. Q.; Mou, Y. M.; Liu, H. X.; Lu, X.; Zhang, Y. Q.; Guo, C. M.; Sun, K. Z.; Liu, D.; Horton, J. H.; Wang, C. et al. Manipulating the electronic properties of an Fe single atom catalyst via secondary coordination sphere engineering to provide enhanced oxygen electrocatalytic activity in Zinc-air batteries. Adv. Mater. 2024, 36, 2410121.
Wang, W.; Hu, Y. C.; Li, P.; Liu, Y. C.; Chen, S. L. Realizing the 4e−/2e− pathway transition of o2 reduction on Co–N4–C catalysts by regulating the chemical structures beyond the second coordination shells. ACS Catal. 2024, 14, 5961–5971.
Liu, J. P.; Jin, Y. L.; Jin, R.; Liu, Y.; Ma, Z. L.; Guo, C. Z.; Lei, Y.; Sun, L. T.; Chen, H. F.; Si, Y. J. et al. In situ regulating the phase structure of Ce-based catalytic sites to boost the performance of zinc-air batteries. Nano Energy 2024, 129, 110030.
Sun, Z. G.; Zhang, H. J.; Cao, L. L.; Liu, X. K.; Wu, D.; Shen, X. Y.; Zhang, X.; Chen, Z. H.; Ru, S.; Zhu, X. Y. et al. Understanding synergistic catalysis on Cu-Se dual atom sites via Operando X-ray absorption spectroscopy in oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202217719.
Lien, H. T.; Chang, S. T.; Chen, P. T.; Wong, D. P.; Chang, Y. C.; Lu, Y. R.; Dong, C. L.; Wang, C. H.; Chen, K. H.; Chen, L. C. Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nat. Commun. 2020, 11, 4233.
Sun, B.; Zhang, S.; Yang, H.; Zhang, T.; Dong, Q.; Zhang, W.; Ding, J.; Liu, X.; Wang, L.; Han, X. et al. Revealing the active sites in atomically dispersed multi-metal–nitrogen–carbon catalysts. Adv. Funct. Mater. 2024, 34, 2315862.
Wei, J.; Xia, D. S.; Wei, Y. P.; Zhu, X. Y.; Li, J.; Gan, L. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ raman spectroscopy. ACS Catal. 2022, 12, 7811–7820.
Zhao, J. Y.; Lian, J.; Zhao, Z. X.; Wang, X. M.; Zhang, J. J. A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 2023, 15, 141939.
Chen, M. P.; Liu, D.; Qiao, L. L.; Zhou, P. F.; Feng, J. X.; Ng, K. W.; Liu, Q. J.; Wang, S. P.; Pan, H. In-situ/ operando Raman techniques for in-depth understanding on electrocatalysis. Chem. Eng. J. 2023, 461, 141939.
Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.
Luo, H.; Wang, J. J.; Zhang, S. Y.; Sun, B. W.; Chen, Z. Y.; Ren, X. X.; Luo, Z. Y.; Han, X. P.; Hu, W. B. In situ symbiosis of cerium oxide nanophase for enhancing the oxygen electrocatalysis performance of single-atom Fe–N–C catalyst with prolonged stability for Zinc-air batteries. Small 2024, 20, 202400357.
Xiao, F.; Wang, Y. A.; Xu, G. L.; Yang, F.; Zhu, S. Q.; Sun, C. J.; Cui, Y. D.; Xu, Z. W.; Zhao, Q. L.; Jang, J. et al. Fe–N–C boosts the stability of supported platinum nanoparticles for fuel cells. J. Am. Chem. Soc. 2022, 144, 20372–20384.
Xie, H.; Xie, X. H.; Hu, G. X.; Prabhakaran, V.; Saha, S.; Gonzalez-Lopez, L.; Phakatkar, A. H.; Hong, M.; Wu, M. L.; Shahbazian-Yassar, R. et al. Ta–TiO x nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy 2022, 7, 281–289.
Zeng, Y. C.; Li, C. Z.; Li, B. Y.; Liang, J. S.; Zachman, M. J.; Cullen, D. A.; Hermann, R. P.; Alp, E. E.; Lavina, B.; Karakalos, S. et al. Tuning the thermal activation atmosphere breaks the activity-stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat. Catal. 2023, 6, 1215–1227.
Ma, W.; Deng, Z.; Zhang, X. J.; Zhang, Z.; Zhou, Z. Regulating the electronic structure of single-atom catalysts for electrochemical energy conversion. J. Mater. Chem. A 2023, 11, 12643–12658.
Liu, L. C.; Corma, A. Bimetallic sites for catalysis: From binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem. Rev. 2023, 123, 4855–4933.
Chandrasekaran, S.; Hu, R.; Yao, L.; Sui, L.; Liu, Y. P.; Abdelkader, A.; Li, Y. L.; Ren, X. Z.; Deng, L. B. Mutual self-regulation of d-electrons of single atoms and adjacent nanoparticles for bifunctional oxygen electrocatalysis and rechargeable Zinc-air batteries. Nano-Micro Lett. 2023, 15, 48.