PDF (16.1 MB)
Collect
Submit Manuscript
Research Article | Open Access

Solid-state stepwise temperature-programmable synthesis of bioinspired Fe-N-C oxygen reduction electrocatalyst featuring Fe-N5 configuration

Wei Sang1,§Somboon Chaemchuen1,5,§Longyang Zhang1Zechen Wang1Xingchuan Li1Cocoro Andrew Nagasaka2Mo Xiong3Naoki Ogiwara2Cheng Chen1,4Zhao Wang9Jian Zhang10Francis Verpoort1,7,8Shichun Mu1Zongkui Kou1,4()Tingting Wang6()
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiao tong University, Xi’an 710049, China
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430200, China
Joint Institute of Chemical Research (FFMiEN), Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia
Hubei Key Laboratory of Ferro, & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Sciences, Hubei University, Wuhan 430062, China
School of Chemistry and Chemical Engineering, Hainan University, Haikou 57022, China

§ Wei Sang and Somboon Chaemchuen contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A novel solid-state stepwise temperature-programmable (SST) route was developed to achieve direct, facile and green synthesis of bioinspired Fe-N5-C catalyst. Fe-N5-C shows excellent electrocatalytic performance (half-wave potential: 0.92 V, current density: 15.6 mA·cm−2 at 0.85 V), with Fe sites donating 0.1 e to the axial N ligand, enhancing O2 activation and *OH desorption.

Abstract

The bioinspired Fe-N-C features an asymmetric Fe-N5 configuration to produce active metal-oxygen intermediates by introducing axial N ligand into a symmetric Fe-N4 structure, enabling highly active oxygen reduction reaction (ORR). However, the artificial creation of active Fe-N5 configuration with a direct, facile and green method has been rarely developed yet, as current techniques involve complex processes and costly precursors. Herein, we advance a novel solid-state stepwise temperature-programmable (SST) route to directly produce bioinspired Fe-N5-C. We then demonstrate that such a Fe-N5-C exhibits a quite higher half-wave potential (0.92 V) with 22-fold faster ORR kinetics (15.6 mA·cm−2 @ 0.85 V) over that of the commercial Pt/C counterpart. Indeed, we perform density functional theory (DFT) to find that the Fe is discharged with an extra 0.1 e through the axially coordinate N ligand, which significantly enhances the ability to activate O2 and enables an easier desorption of the crucial intermediate *OH on the Fe-N5 configuration over the conventional Fe-N4 structure.

Electronic Supplementary Material

Download File(s)
7245_ESM.pdf (2 MB)

References

[1]

Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66.

[2]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[3]

Zeng, X. X.; Jing, Y. D.; Gao, S. S.; Zhang, W. C.; Zhang, Y.; Liu, H. W.; Liang, C.; Ji, C. C.; Rao, Y.; Wu, J. B. et al. Hydrogenated borophene enabled synthesis of multielement intermetallic catalysts. Nat. Commun. 2023, 14, 7414.

[4]

Wang, J. J.; Zhou, Y. G.; Li, J. Y.; Zhao, L.; Zhu, Y.; Wang, Y. M.; Wu, R.; Wang, Y.; Blackwood, D. J.; Chen, J. S. Synthesis, characterizations, and applications of vacancies-containing materials for energy storage systems. DeCarbon. 2024, 3, 100037.

[5]

Chen, J. P.; Wu, P. H.; Bu, F.; Gao, Y.; Liu, X. Y.; Guan, C. 3D printing enhanced catalysis for energy conversion and environment treatment. DeCarbon 2023, 2, 100019.

[6]

Sun, Y. C.; Liu, X. L.; Zhu, M. Y.; Zhang, Z. X.; Chen, Z. S.; Wang, S. H.; Ji, Z. Y.; Yang, H.; Wang, X. K. Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: Synthesis approaches and performance evaluation. DeCarbon 2023, 2, 100018.

[7]

Ye, S. H.; Xie, S. H.; Lei, Y. Q.; Yang, X. Y.; Hu, J.; Zheng, L. R.; Chen, Z. D.; Fu, Y. H.; Ren, X. Z.; Li, Y. L. et al. Modulating the electronic spin state by constructing dual-metal atomic pairs for activating the dynamic site of oxygen reduction reaction. Nano Res. 2023, 16, 1869–1877.

[8]

Huang, J. S.; Lu, Q. Q.; Ma, X.; Yang, X. R. Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. J. Mater. Chem. A 2018, 6, 18488–18497.

[9]

Hou, K. P.; Börgel, J.; Jiang, H. Z. H.; SantaLucia, D. J.; Kwon, H.; Zhuang, H.; Chakarawet, K.; Rohde, R. C.; Taylor, J. W.; Dun, C. et al. Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal-organic framework. Science 2023, 382, 547–553.

[10]

Meng, J.; Qin, H. N.; Lei, H. T.; Li, X. L.; Fan, J.; Zhang, W.; Apfel, U. P.; Cao, R. Adapting synthetic models of heme/cu sites to energy-efficient electrocatalytic oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202312255.

[11]

Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 2014, 114, 3919–3962.

[12]

Poulos, T. L. The role of the proximal ligand in heme enzymes. J. Biol. Inorg. Chem. 1996, 1, 356–359.

[13]

Ozaki, S. I.; Roach, M. P.; Matsui, T.; Watanabe, Y. Investigations of the roles of the distal heme environment and the proximal heme iron ligand in peroxide activation by heme enzymes via molecular engineering of myoglobin. Acc. Chem. Res. 2001, 34, 818–825.

[14]

Xie, X. Y.; Zhai, Z. Y.; Peng, L. S.; Zhang, J. B.; Shang, L.; Zhang, T. R. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries. Sci. Bull. 2023, 68, 2862–2875.

[15]

Yoshikawa, S.; Shimada, A. Reaction mechanism of cytochrome c oxidase. Chem. Rev. 2015, 115, 1936–1989.

[16]

Kaila, V. R. I.; Oksanen, E.; Goldman, A.; Bloch, D. A.; Verkhovsky, M. I.; Sundholm, D.; Wikström, M. A combined quantum chemical and crystallographic study on the oxidized binuclear center of cytochrome c oxidase. Biochim. Biophys. Acta-Bioenerg. 2011, 1807, 769–778.

[17]

Yu, S.; Levell, Z.; Jiang, Z.; Zhao, X. H.; Liu, Y. Y. What is the rate-limiting step of oxygen reduction reaction on Fe-N-C catalysts. J. Am. Chem. Soc. 2023, 145, 25352–25356.

[18]

Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y. L.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D. A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 2007, 315, 1565–1568.

[19]

Luo, X.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C. Z. Secondary-atom-doping enables robust Fe-N-C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 2020, 12, 163.

[20]

Liang, X.; Li, Z. Y.; Xiao, H.; Zhang, T. F.; Xu, P.; Zhang, H.; Gao, Q. M.; Zheng, L. R. Two types of single-atom FeN4 and FeN5 electrocatalytic active centers on N-doped carbon driving high performance of the SA-Fe-NC oxygen reduction reaction catalyst. Chem. Mater. 2021, 33, 5542–5554.

[21]

Zhang, L. J.; Jin, N.; Yang, Y. B.; Miao, X. Y.; Wang, H.; Luo, J.; Han, L. L. Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: A review. Nano-Micro Lett. 2023, 15, 228.

[22]

Jahan, M.; Bao, Q. L.; Loh, K. P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713.

[23]

Peng, Y. X.; Li, Z. P.; Xia, D. G.; Zheng, L. R.; Liao, Y.; Li, K.; Zuo, X. Probing the influence of the center atom coordination structure in iron phthalocyanine multi-walled carbon nanotube-based oxygen reduction reaction catalysts by X-ray absorption fine structure spectroscopy. J. Power Sources 2015, 291, 20–28.

[24]

Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-N x sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655–1663.

[25]

Pizarro, A.; Abarca, G.; Gutiérrez-Cerón, C.; Cortés-Arriagada, D.; Bernardi, F.; Berrios, C.; Silva, J. F.; Rezende, M. C.; Zagal, J. H.; Oñate, R. et al. Building pyridinium molecular wires as axial ligands for tuning the electrocatalytic activity of iron phthalocyanines for the oxygen reduction reaction. ACS Catal. 2018, 8, 8406–8419.

[26]

Zhang, H.; Huang, L.; Chen, J. X.; Liu, L.; Zhu, X. Y.; Wu, W. W.;Dong, S. J. Bionic design of cytochrome c oxidase-like single-atom nanozymes for oxygen reduction reaction in enzymatic biofuel cells. Nano Energy 2021, 83, 105798.

[27]

Xu, W. Q.; Song, W. Y.; Kang, Y. K.; Jiao, L.; Wu, Y.; Chen, Y. F.; Cai, X. L.; Zheng, L. R.; Gu, W. L.; Zhu, C. Z. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 2021, 93, 12758–12766.

[28]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[29]

Zhao, Y. M.; Zhang, P. C.; Xu, C.; Zhou, X. Y.; Liao, L. M.; Wei, P. J.; Liu, E. S.; Chen, H. Q.; He, Q. G.; Liu, J. G. Design and preparation of Fe-N5 catalytic sites in single-atom catalysts for enhancing the oxygen reduction reaction in fuel cells. ACS Appl. Mater. Interfaces 2020, 12, 17334–17342.

[30]

Xu, W. Q.; Wu, Y.; Wang, X. S.; Qin, Y.; Wang, H. J.; Luo, Z.; Wen, J.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. Bioinspired single-atom sites enable efficient oxygen activation for switching anodic/cathodic electrochemiluminescence. Angew. Chem., Int. Ed. 2023, 62, e202304625.

[31]

Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.;Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

[32]

Wei, P. J.; Yu, G. Q.; Naruta, Y.; Liu, J. G. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 6659–6663.

[33]

Zhou, X. Y.; Xu, C.; Guo, P. P.; Sun, W. L.; Wei, P. J.; Liu, J. G. Axial ligand coordination tuning of the electrocatalytic activity of iron porphyrin electrografted onto carbon nanotubes for the oxygen reduction reaction. Chem. —Eur. J. 2021, 27, 9898–9904.

[34]

Kong, X. J.; He, T.; Zhang, Y. Z.; Wu, X. Q.; Wang, S. N.; Xu, M. M.; Si, G. R.; Li, J. R. Constructing new metal-organic frameworks with complicated ligands from “One-Pot” in situ reactions. Chem. Sci. 2019, 10, 3949–3955.

[35]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[36]

Ambroz, F.; Macdonald, T. J.; Martis, V.; Parkin, I. P. Evaluation of the BET theory for the characterization of meso and microporous MOFs. Small Methods 2018, 2, 1800173.

[37]

Wei, S. J.; Li, L.; Li, A.; Zhang, L.; Hu, H. B.; Pang, D. W.; Zhang, Q. H.; Xiao, H.; Chen, W. X. Atomic defects engineering on Fe–N4 sites for boosting oxygen reduction by in-situ ZnO thermal etching strategy. Chem. Eng. J. 2023, 465, 142820.

[38]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[39]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[40]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[41]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[42]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[43]

Wang, J. C.; Chaemchuen, S.; Klomkliang, N.; Verpoort, F. In situ thermal solvent-free synthesis of zeolitic imidazolate frameworks with high crystallinity and porosity for effective adsorption and catalytic applications. Cryst. Growth Des. 2021, 21, 5349–5359.

[44]

Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe–Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.

[45]

Kennedy, B. J.; Fallon, G. D.; Gatehouse, B. M. K. C.; Murray, K. S. Spin-state differences and spin crossover in five-coordinate Lewis base adducts of cobalt(II) Schiff base complexes. Structure of the high-spin (N,N'-o-phenylenebis(salicylaldiminato))cobalt(II)-2-methylimidazole adduct. Inorg. Chem. 1984, 23, 580–588.

[46]

Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.

[47]

Wang, M. J.; Mao, Z. X.; Liu, L.; Peng, L. S.; Yang, N.; Deng, J. H.; Ding, W.; Li, J.; Wei, Z. D. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction. Small 2018, 14, 1804183.

[48]

Ye, L.; Ying, Y. R.; Sun, D. R.; Zhang, Z. Y.; Fei, L. F.; Wen, Z. H.; Qiao, J. L.; Huang, H. T. Highly efficient porous carbon electrocatalyst with controllable N-species content for Selective CO2 Reduction. Angew. Chem., Int. Ed. 2020, 59, 3244–3251.

[49]

Wang, Y.; Paidi, V. K.; Wang, W. Z.; Wang, Y.; Jia, G. R.; Yan, T. Y.; Cui, X. Q.; Cai, S. H.; Zhao, J. X.; Lee, K. S. et al. Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation. Nat. Commun. 2024, 15, 2239.

[50]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.;Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[51]

Yao, Y. T.; Lyu, J. H.; Li, X. C.; Chen, C.; Verpoort, F.; Wang, J.; Pan, Z. H.; Kou, Z. K. A review of efficient electrocatalysts for the oxygen evolution reaction at large current density. DeCarbon, 2024, 5, 100062.

[52]

Nie, Z. C.; Chen, M. S.; Zhang, L.; Feng, Q.; Hu, J. S.; Huang, X. H.; Zhou, C. H.; Zhou, Y. T.; Wågberg, T.; Hu, G. Z. Tailoring the D-band center by intermetallic charge-transfer manipulation in bimetal alloy nanoparticle confined in N-doped carbon nanobox for efficient rechargeable Zn-air battery. Chem. Eng. J. 2023, 463, 142411.

[53]

Nie, Z. C.; Zhang, L.; Zhu, Q. L.; Ke, Z. F.; Zhou, Y. T.; Wågberg, T.; Hu, G. Z. Reversed charge transfer induced by nickel in Fe-Ni/Mo2C@nitrogen-doped carbon nanobox for promoted reversible oxygen electrocatalysis. J. Energy Chem., 2024, 88, 202–212.

[54]

Ao, X.; Zhang, W.; Li, Z. S.; Lv, L.; Ruan, Y. J.; Wu, H. H.; Chiang, W. H.; Wang, C. D.; Liu, M. L.; Zeng, X. C. Unraveling the high-activity nature of Fe-N-C electrocatalysts for the oxygen reduction reaction: The extraordinary synergy between Fe–N4 and Fe4N. J. Mater. Chem. A 2019, 7, 11792–11801.

[55]

Yan, X. X.; Liu, D.; Guo, P. F.; He, Y. F.; Wang, X. Q.; Li, Z. L.; Pan, H. G.; Sun, D. L.; Fang, F.; Wu, R. B. Atomically dispersed Co2MnN8 triatomic sites anchored in N-doped carbon enabling efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2210975.

[56]

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

[57]

Ku, Y. P.; Ehelebe, K.; Hutzler, A.; Bierling, M.; Böhm, T.; Zitolo, A.; Vorokhta, M.; Bibent, N.; Speck, F. D.; Seeberger, D. et al. Oxygen reduction reaction in alkaline media causes iron leaching from Fe-N-C electrocatalysts. J. Am. Chem. Soc. 2022, 144, 9753–9763.

[58]

Li, Z. J.; Zhang, M. Y.; Dong, X. L.; Ji, S. Q.; Zhang, L. L.; Leng, L. P.; Li, H. H.; Horton, J. H.; Xu, Q.; Zhu, J. F. Strong electronic interaction of indium oxide with palladium single atoms induced by quenching toward enhanced hydrogenation of nitrobenzene. Appl. Catal. B: Environ. 2022, 313, 121462.

[59]

Xiao, F.; Wang, Q.; Xu, G. L.; Qin, X. P.; Hwang, I.; Sun, C. J.; Liu, M.; Hua, W.; Wu, H. W.; Zhu, S. Q. et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503–512.

[60]

Yao, H. X.; Wang, X. K.; Li, K.; Li, C.; Zhang, C. H.; Zhou, J.; Cao, Z. W.; Wang, H. L.; Gu, M.; Huang, M. H. et al. Strong electronic coupling between ruthenium single atoms and ultrafine nanoclusters enables economical and effective hydrogen production. Appl. Catal. B: Environ. 2022, 312, 121378.

[61]

Zhang, Z. R.; Feng, C.; Wang, D. D.; Zhou, S. M.; Wang, R. Y.; Hu, S. P.; Li, H. L.; Zuo, M.; Kong, Y.; Bao, J. et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nat. Commun. 2022, 13, 2473.

[62]

Jiang, H.; Xia, J.; Jiao, L.; Meng, X. M.; Wang, P. F.; Lee, C. S.;Zhang, W. J. Ni single atoms anchored on N-doped carbon nanosheets as bifunctional electrocatalysts for urea-assisted rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2022, 310, 121352.

[63]

Yang, B. L.; Li, X. L.; Cheng, Q.; Jia, X. D.; Liu, Y. J.;Xiang, Z. H. A highly efficient axial coordinated CoN5 electrocatalyst via pyrolysis-free strategy for alkaline polymer electrolyte fuel cells. Nano Energy 2022, 101, 107565.

[64]

Yang, S.; Li, X. W.; Tan, T. Y.; Mao, J. N.; Xu, Q.; Liu, M. H.; Miao, Q. Y.; Mei, B. B.; Qiao, P. Z.; Gu, S. Q. et al. A fully-conjugated covalent organic framework-derived carbon supporting ultra-close single atom sites for ORR. Appl. Catal. B: Environ. 2022, 307, 121147.

[65]

Wang, M. J.; Wang, L.; Li, Q. B.; Wang, D.; Yang, L.; Han, Y. J.; Ren, Y.; Tian, G.; Zheng, X. Y.; Ji, M. W. et al. Regulating the coordination geometry and oxidation state of single-atom Fe sites for enhanced oxygen reduction electrocatalysis. Small 2023, 19, 2300373.

[66]

Tao, J. J.; Wang, X.; Xu, M. J.; Liu, C. P.; Ge, J. J.; Xing, W. Non-noble metals as activity sites for ORR catalysts in proton exchange membrane fuel cells (PEMFCs). Ind. Chem. Mater. 2023, 1, 388–409.

[67]

Onderko, E. L.; Silakov, A.; Yosca, T. H.;Green, M. T. Characterization of a selenocysteine-ligated P450 compound I reveals direct link between electron donation and reactivity. Nat. Chem. 2017, 9, 623–628.

[68]

Adam, S. M.; Wijeratne, G. B.; Rogler, P. J.; Diaz, D. E.; Quist, D. A.; Liu, J. J.; Karlin, K. D. Synthetic Fe/Cu complexes: Toward understanding heme-copper oxidase structure and function. Chem. Rev. 2018, 118, 10840–11022.

Nano Research
Article number: 94907245
Cite this article:
Sang W, Chaemchuen S, Zhang L, et al. Solid-state stepwise temperature-programmable synthesis of bioinspired Fe-N-C oxygen reduction electrocatalyst featuring Fe-N5 configuration. Nano Research, 2025, 18(3): 94907245. https://doi.org/10.26599/NR.2025.94907245
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return