PDF (14.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Halophobic Prussian blue analogue electrodes for saturated saline water electrolysis

Wei Liu1Jiage Yu1Boyu Ding1Tianshui Li1Shihang Li1Xinlong Guo1Linlin Zhou1Benqiang Tian1Yixin Zhang1Yizhe Li1Mengze Ma1Kairui Wang1Huijun Xin2Daojin Zhou1 ()Yun Kuang2 ()Xiaoming Sun1 ()
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
Show Author Information

Graphical Abstract

View original image Download original image
Most seawater electrolysis cathodes fail to support continuous operation due to NaCl crystallization. Addressing this overlooked issue for the first time, halophobic Pt/NiFe Prussian blue analogue cathodes are constructed, leveraging the self-originated Fe(CN)64− to control the NaCl crystallization site. This innovative prevents the coverage of active sites by NaCl crystals, rendering continuous seawater electrolysis feasible.

Abstract

Continuous seawater electrolysis is efficient for green hydrogen production, but some key issues have been overlooked. For example, the accumulated to saturated NaCl in electrolyte is poison to cathode by covering its surface and available active sites. Herein we demonstrate Pt/NiFe Prussian blue analogue (Pt/NiFePBA) electrode can continuously catalyze hydrogen evolution effectively at −500 mA·cm−2 in a 6 M NaOH electrolyte containing saturated NaCl, without being impeded by the formation of NaCl crystals on the electrode surface, which is in distinct contrast to commercial electrodes. Experimental results indicate that Fe(CN)64− spontaneously released by Pt/NiFePBA blocks the traditionally preferred basal plane growth of NaCl along {100} facets, but favors its growth along {110} basal plane. This alteration leads to an increased crystallization difficulty of NaCl near the electrode, rendering it halophobic (anti-NaCl precipitation) property. This investigation should shed light on general salt involving process besides the practical implementation of seawater electrolysis.

Electronic Supplementary Material

Download File(s)
7246_ESM.pdf (1.7 MB)

References

[1]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[2]

Xie, H. P.; Zhao, Z. Y.; Liu, T.; Wu, Y. F.; Lan, C.; Jiang, W. C.; Zhu, L. Y.; Wang, Y. P.; Yang, D. S.; Shao, Z. P. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678.

[3]

Zhang, X. H.; Cao, C. T.; Ling, T.; Ye, C.; Lu, J.; Shan, J. Q. Developing practical catalysts for high-current-density water electrolysis. Adv. Energy Mater. 2024, 14, 2402633.

[4]

Guo, J. X.; Wang, R. G.; Wang, Q. L.; Ma, R. Z.; Li, J. S.; Zhao, E. L.; Shan, J. Q.; Ling, T. Constructing an OH-enriched microenvironment on the electrode surface for natural seawater electrolysis. Nano Res. 2024, 17, 9483–9489.

[5]

Li, P. S.; Wang, S. Y.; Samo, I. A.; Zhang, X. H.; Wang, Z. L.; Wang, C.; Li, Y.; Du, Y. Y.; Zhong, Y.; Cheng, C. T. et al. Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production. Research 2020, 2020, 2872141.

[6]

Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem. 2021, 133, 22922–22926.

[7]

Liu, W.; Yu, J. G.; Sendeku, M. G.; Li, T. S.; Gao, W. Q.; Yang, G. T.; Kuang, Y.; Sun, X. M. Ferricyanide armed anodes enable stable water oxidation in saturated saline water at 2 A/cm2. Angew. Chem., Int. Ed. 2023, 62, e202309882.

[8]

Liu, W.; Yu, J. G.; Li, T. S.; Li, S. H.; Ding, B. Y.; Guo, X. L.; Cao, A. Q.; Sha, Q. H.; Zhou, D. J.; Kuang, Y. et al. Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A·cm−2. Nat. Commun. 2024, 15, 4712.

[9]

LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

[10]

Li, J. J.; Deepak, F. L. In situ kinetic observations on crystal nucleation and growth. Chem. Rev. 2022, 122, 16911–16982.

[11]
Yazdanpanah, N.; Nagy, Z. K. The Handbook of Continuous Crystallization; Royal Society of Chemistry: London, 2020.
[12]

Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

[13]

Chu, H. Q.; Liu, Z. L.; Ji, T. X.; Yang, C. H.; Xu, N. Recent advances in the preparation of superhydrophobic coatings based on low-surface-energy modifiers: Diversified properties and potential applications. Appl. Therm. Eng. 2024, 251, 123591.

[14]

Xu, N.; Ji, T. X.; Liu, Z. L.; Xu, Q.; Chu, H. Q. Research on molecular dynamics of heat and mass transfer of liquids on surfaces with different shapes of nanoscale pore structures. Int. J. Heat Fluid Flow 2024, 110, 109562.

[15]

Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.

[16]

Xu, N.; Liu, Z. L.; Yu, X. Y.; Gao, J.; Chu, H. Q. Processes, models and the influencing factors for enhanced boiling heat transfer in porous structures. Renew. Sustain. Energy Rev. 2024, 192, 114244.

[17]

Xu, N.; Qiu, B. B.; Rui, Z. C.; Ji, T. X.; Liu, Z. L.; Chu, H. Q. Effect of heat and bubble mass transfer on the efficiency of alkaline electrolysis hydrogen production. Nano Res. 2024, 17, 9345–9370.

[18]

Bode, A. A. C.; Vonk, V.; van den Bruele, F. J.; Kok, D. J.; Kerkenaar, A. M.; Mantilla, M. F.; Jiang, S. F.; Meijer, J. A. M.; van Enckevort, W. J. P.; Vlieg, E. Anticaking activity of ferrocyanide on sodium chloride explained by charge mismatch. Cryst. Growth Des. 2012, 12, 1919–1924.

[19]

Glasner, A.; Zidon, M. The crystallization of NaCl in the presence of [Fe(CN)6]4− ions. J. Cryst. Growth 1974, 21, 294–304.

[20]

Gupta, S.; Pel, L.; Steiger, M.; Kopinga, K. The effect of ferrocyanide ions on sodium chloride crystallization in salt mixtures. J. Cryst. Growth 2015, 410, 7–13.

[21]

Yang, Y. Y.; Hu, C. J.; Shan, J. Q.; Cheng, C. Q.; Han, L. L.; Li, X. Z.; Wang, R. G.; Xie, W.; Zheng, Y.; Ling, T. Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical. Angew. Chem., Int. Ed. 2023, 62, e202300989.

[22]

Wang, R. G.; Zhang, L. F.; Shan, J. Q.; Yang, Y. Y.; Lee, J. F.; Chen, T. Y.; Mao, J.; Zhao, Y.; Yang, L. J.; Hu, Z. P. et al. Tuning Fe spin moment in Fe–N–C catalysts to climb the activity volcano via a local geometric distortion strategy. Adv. Sci. 2022, 9, 2203917.

[23]

Liu, Y. Z.; Yu, X. Y.; Li, X. T.; Liu, X.; Ye, C.; Ling, T.; Wang, X.; Zhu, Z. L.; Shan, J. Q. Selective synthesis of organonitrogen compounds via electrochemical C–N coupling on atomically dispersed catalysts. ACS Nano 2024, 18, 23894–23911.

[24]

Xie, R. H.; Cheng, C. Q.; Wang, R. G.; Li, J. S.; Zhao, E. L.; Zhao, Y.; Liu, Y. L.; Guo, J. X.; Yin, P. F.; Ling, T. Maximizing thiophene-sulfur functional groups in carbon catalysts for highly selective H2O2 electrosynthesis. ACS Catal. 2024, 14, 4471–4477.

[25]

Yan, X. Y.; Duan, C. Y.; Yu, S. H.; Dai, B.; Sun, C. Y.; Chu, H. Q. Recent advances on CO2 reduction reactions using single-atom catalysts. Renew. Sustain. Energy Rev. 2024, 190, 114086.

[26]

X. X.; Sha, Q. H.; Li, P. S.; Li, T. S.; Yang, G. T.; Liu, W.; Yu, E. D.; Zhou, D. J.; Fang, J. J.; Chen, W. X. et al. Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 2024, 15, 1973.

[27]

Shi, H.; Wang, T. Y.; Liu, J. Y.; Chen, W. W.; Li, S. Z.; Liang, J. S.; Liu, S. X.; Liu, X.; Cai, Z.; Wang, C. et al. A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 2023, 14, 3934.

[28]

Hu, H. S.; Wang, X. L.; Attfield, J. P.; Yang, M. H. Metal nitrides for seawater electrolysis. Chem. Soc. Rev. 2024, 53, 163–203.

[29]

Xu, W. W.; Wang, Z. F.; Liu, P. Y.; Tang, X.; Zhang, S. X.; Chen, H. C.; Yang, Q. H.; Chen, X.; Tian, Z. Q.; Dai, S. et al. Ag nanoparticle-induced surface chloride immobilization strategy enables stable seawater electrolysis. Adv. Mater. 2024, 36, 2306062.

[30]

Zhang, S. X.; Wang, Y. N.; Li, S. Y.; Wang, Z. F.; Chen, H. C.; Yi, L.; Chen, X.; Yang, Q. H.; Xu, W. W.; Wang, A. Y. et al. Concerning the stability of seawater electrolysis: A corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 2023, 14, 4822.

[31]

Li, T. S.; Zhao, X. P.; Getaye Sendeku, M.; Zhang, X. H.; Xu, L.; Wang, Z. L.; Wang, S. Y.; Duan, X. X.; Liu, H.; Liu, W. et al. Phosphate-decorated Ni3Fe-LDHs@CoP x nanoarray for near-neutral seawater splitting. Chem. Eng. J. 2023, 460, 141413.

[32]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

[33]

Yu, M.; Li, J. H.; Liu, F. M.; Liu, J. D.; Xu, W. C.; Hu, H. L.; Chen, X. J.; Wang, W. C.; Cheng, F. Y. Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting. J. Energy Chem. 2022, 72, 361–369.

[34]

Kawashima, K.; Márquez, R. A.; Smith, L. A.; Vaidyula, R. R.; Carrasco-Jaim, O. A.; Wang, Z. Q.; Son, Y. J.; Cao, C. L.; Mullins, C. B. A Review of transition metal boride, carbide, pnictide, and chalcogenide water oxidation electrocatalysts. Chem. Rev. 2023, 123, 12795–13208.

[35]

Chatenet, M.; Pollet, B. G.; Dekel, D. R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R. D.; Bazant, M. Z.; Eikerling, M.; Staffell, I. et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762.

[36]

Whitehead, C. B.; Özkar, S.; Finke, R. G. LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chem. Mater. 2019, 31, 7116–7132.

[37]

Chu, D. B. K.; Owen, J. S.; Peters, B. Nucleation and growth kinetics from LaMer burst data. J. Phys. Chem. A 2017, 121, 7511–7517.

[38]

Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912.

[39]

Neitzel, A.; Johánek, V.; Lykhach, Y.; Skála, T.; Tsud, N.; Vorokhta, M.; Matolín, V.; Libuda, J. Reduction of Pt2+ species in model Pt–CeO2 fuel cell catalysts upon reaction with methanol. Appl. Surf. Sci. 2016, 387, 674–681.

[40]

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

[41]

Liu, W.; Ding, X. Q.; Cheng, J. J.; Jing, J. L.; Li, T. S.; Huang, X.; Xie, P. P.; Lin, X. C.; Ding, H. L.; Kuang, Y. et al. Inhibiting dissolution of active sites in 80 °C alkaline water electrolysis by oxyanion engineering. Angew. Chem., Int. Ed. 2024, 63, e202406082.

[42]

Wu, X. L.; Cao, M. H.; Hu, C. W.; He, X. Y. Sonochemical synthesis of prussian blue nanocubes from a single-source precursor. Cryst. Growth Des. 2006, 6, 26–28.

[43]

Ge, Y. C.; Dong, P.; Craig, S. R.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Transforming nickel hydroxide into 3D prussian blue analogue array to obtain Ni2P/Fe2P for efficient hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1800484.

[44]

Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

[45]

Guo, Y.; Hou, B.; Cui, X. Z.; Liu, X. C.; Tong, X. L.; Yang, N. J. Pt atomic layers boosted hydrogen evolution reaction in nonacidic media. Adv. Energy Mater. 2022, 12, 2201548.

[46]

Tan, H.; Tang, B.; Lu, Y.; Ji, Q. Q.; Lv, L. Y.; Duan, H. L.; Li, N.; Wang, Y.; Feng, S. H.; Li, Z. et al. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat. Commun. 2022, 13, 2024.

[47]

Hong, Y. J.; Jeong, S.; Seol, J. H.; Kim, T.; Cho, S. C.; Lee, T. K.; Yang, C.; Baik, H.; Park, H. S.; Lee, E. et al. Ru2P/Ir2P heterostructure promotes hydrogen spillover for efficient alkaline hydrogen evolution reaction. Adv. Energy Mater. 2024, 14, 2401426.

[48]

Hu, H. Y.; Zhou, L. S.; Duan, F.; Zhu, H.; Gu, H. W.; Lu, S. L.; Du, M. L. Hydrogen bonding mediated spillover enabling superior alkaline industrial-level current density hydrogen evolution. J. Mater. Chem. A 2022, 10, 23294–23303.

[49]

Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

[50]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[51]

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

[52]

Zhang, T. Y.; Jin, J.; Chen, J. M.; Fang, Y. Y.; Han, X.; Chen, J. Y.; Li, Y. P.; Wang, Y.; Liu, J. F.; Wang, L. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 6875.

[53]

Loo, B. H.; Lee, Y. G.; Liang, E. J.; Kiefer, W. Surface-enhanced Raman scattering from ferrocyanide and ferricyanide ions adsorbed on silver and copper colloids. Chem. Phys. Lett. 1998, 297, 83–89.

[54]

Coondoo, I.; Panwar, N.; Krylova, S.; Krylov, A.; Alikin, D.; Jakka, S. K.; Turygin, A.; Shur, V. Y.; Kholkin, A. L. Temperature-dependent Raman spectroscopy, domain morphology and photoluminescence studies in lead-free BCZT ceramic. Ceram. Int. 2021, 47, 2828–2838.

[55]

Faid, A. Y.; Barnett, A. O.; Seland, F.; Sunde, S. Ni/NiO nanosheets for alkaline hydrogen evolution reaction: In situ electrochemical-Raman study. Electrochim. Acta 2020, 361, 137040.

[56]

Cheng, M.; Peng, W.; Hua, P.; Chen, Z. R.; Sheng, J.; Yang, J.; Wu, Y. Y. In situ formation of pH-responsive Prussian blue for photoacoustic imaging and photothermal therapy of cancer. RSC Adv. 2017, 7, 18270–18276.

[57]

Khan, A. S.; Ganguly, B. Can surface energy be a parameter to define morphological change of rock-salt crystals with additives? A first principles study. CrystEngComm 2013, 15, 2631–2639.

[58]

Lubelli, B.; van Hees, R. P. J. Effectiveness of crystallization inhibitors in preventing salt damage in building materials. J. Cult. Herit. 2007, 8, 223–234.

Nano Research
Article number: 94907246
Cite this article:
Liu W, Yu J, Ding B, et al. Halophobic Prussian blue analogue electrodes for saturated saline water electrolysis. Nano Research, 2025, 18(3): 94907246. https://doi.org/10.26599/NR.2025.94907246
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return