PDF (18.2 MB)
Collect
Submit Manuscript
Research Article | Open Access

Tailoring the proximity of iron and manganese atomic sites for efficient CO2 electroreduction reaction

Xiaohui Sun1 ()Bangyan Zhang1Qing Lu4Jingjing Jiang5Chenliang Ye2 ()Guoqing Cui1Zechao Zhuang2Jun Zhang4Johannes H. Bitter3Guanna Li3 ()Chunming Xu1
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, 6708WG, The Netherlands
Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Institute of Analysis and Testing, Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
Show Author Information

Graphical Abstract

View original image Download original image
Nitrogen-doped carbon supported Fe and Mn heteronuclear single atom catalysts with different Fe and Mn inter-site distance were fabricated for CO2 electroreduction reaction. The catalyst with neighboring Mn and Fe sites showed a CO Faradaic efficiency of 96% at a low overpotential of 320 mV with a Tafel slope of 62 mV·dec−1. The adjacent Mn enhanced the electronic localization of Fe, on which *COOH formation and CO* desorption were boosted.

Abstract

Electrochemical carbon dioxide reduction reaction (CO2RR) into high-value added chemicals and fuels has aroused wide attention, but suffers from high overpotential and poor selectivity. Herein, nitrogen-doped carbon supported Fe and Mn heteronuclear single atom catalysts with different Fe and Mn inter-site distance were fabricated via a templating isolation approach and tested for CO2RR to CO in an aqueous solution. The catalyst with atomically dispersed Fe and Mn sites in close proximity exhibited the highest CO2RR performance, with a CO Faradaic efficiency of 96% at a low overpotential of 320 mV, and a Tafel slope of only 62 mV·dec−1, comparable to state-of-the-art gold catalysts. Experimental analysis combined with theory highlighted that single Mn atom at the neighboring site of Fe enhanced the electronic localization of Fe center, which facilitated the generation of key *COOH intermediate as well as CO* desorption on Fe, leading to superior CO2RR performance at low overpotentials. This work offers atomic-level insights into the correlation between the inter-site distance of atomic sites and CO2RR performance, and paves a new avenue for precise control of single-atom sites on carbon surface for highly active and selective electrocatalysts.

Electronic Supplementary Material

Download File(s)
7249_ESM.pdf (4.6 MB)

References

[1]

Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.

[2]

Yang, Y.; Louisia, S.; Yu, S. B.; Jin, J.; Roh, I.; Chen, C. B.; Fonseca Guzman, M. V.; Feijóo, J.; Chen, P. C.; Wang, H. S. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262–269.

[3]

Kim, J. Y. T.; Sellers, C.; Hao, S. Y.; Senftle, T. P.; Wang, H. T. Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nat. Catal. 2023, 6, 1115–1124.

[4]

Sun, X. H.; Suarez, A. I. O.; Meijerink, M.; van Deelen, T.; Ould-Chikh, S.; Zečević, J.; de Jong, K. P.; Kapteijn, F.; Gascon, J. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework. Nat. Commun. 2017, 8, 1680.

[5]

Wezendonk, T. A.; Sun, X. H.; Dugulan, A. I.; van Hoof, A. J. F.; Hensen, E. J. M.; Kapteijn, F.; Gascon, J. Controlled formation of iron carbides and their performance in Fischer–Tropsch synthesis. J. Catal. 2018, 362, 106–117.

[6]

Li, S. J.; Dong, X.; Wu, G. F.; Song, Y. F.; Mao, J. N.; Chen, A. H.; Zhu, C.; Li, G. H.; Wei, Y. H.; Liu, X. H. et al. Ampere-level CO2 electroreduction with single-pass conversion exceeding 85% in acid over silver penetration electrodes. Nat. Commun. 2024, 15, 6101.

[7]

Liu, M. J.; Zhan, L. S.; Wang, Y. C.; Zhao, X.; Wu, J.; Deng, D. N.; Jiang, J. B.; Zheng, X. R.; Lei, Y. P. Achieving integrated capture and reduction of CO2: A promising electrocatalyst. J. Mater. Sci. Technol. 2023, 165, 235–243.

[8]

Sun, X. H.; Wang, R. M.; Ould-Chikh, S.; Osadchii, D.; Li, G. N.; Aguilar, A.; Hazemann, J. L.; Kapteijn, F.; Gascon, J. Structure–activity relationships in metal organic framework derived mesoporous nitrogen-doped carbon containing atomically dispersed iron sites for CO2 electrochemical reduction. J. Catal. 2019, 378, 320–330.

[9]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[10]

Zhao, X.; Feng, Q. G.; Liu, M. J.; Wang, Y. C.; Liu, W.; Deng, D. N.; Jiang, J. B.; Zheng, X. R.; Zhan, L. S.; Wang, J. X. et al. Built-in electric field promotes interfacial adsorption and activation of CO2 for C1 products over a wide potential window. ACS Nano 2024, 18, 9678–9687.

[11]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[12]

Shang, W. Z.; Liu, W.; Cai, X. B.; Hu, J. W.; Guo, J. Y.; Xin, C. C.; Li, Y. H.; Zhang, N. T.; Wang, N.; Hao, C. et al. Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. Adv. Powder Mater. 2023, 2, 100094.

[13]

Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 2021, 4, 654–662.

[14]

Mariano, R. G.; Kang, M.; Wahab, O. J.; McPherson, I. J.; Rabinowitz, J. A.; Unwin, P. R.; Kanan, M. W. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat. Mater. 2021, 20, 1000–1006.

[15]

Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

[16]

Wu, Y. H.; Chen, C. J.; Yan, X. P.; Sun, X. F.; Zhu, Q. G.; Li, P. S.; Li, Y. M.; Liu, S. J.; Ma, J. Y.; Huang, Y. Y. et al. Boosting CO2 electroreduction over a cadmium single-atom catalyst by tuning of the axial coordination structure. Angew. Chem., Int. Ed. 2021, 60, 20803–20810.

[17]

Martini, A.; Hursán, D.; Timoshenko, J.; Rüscher, M.; Haase, F.; Rettenmaier, C.; Ortega, E.; Etxebarria, A.; Roldan Cuenya, B. Tracking the evolution of single-atom catalysts for the CO2 electrocatalytic reduction using operando X-ray absorption spectroscopy and machine learning. J. Am. Chem. Soc. 2023, 145, 17351–17366.

[18]

Sun, X. H.; Wang, L. L.; Lan, X. Y.; Lu, Q.; Tuo, Y.; Ye, C. L.; Wang, D. S.; Xu, C. M. Positively charged nickel-sulfur dual sites for efficient CO2 electroreduction reaction. Appl. Catal. B: Environ. 2024, 342, 123389.

[19]

Bai, Z. Q.; Zhang, W. H.; Liu, Y. F. Enhanced nitrogen electroreduction performance by the reorganization of local coordination environment of supported single atom on N(O)-dual-doped graphene. Nano Res. 2023, 16, 9099–9106.

[20]

Liu, T. Y.; Wang, Y.; Li, Y. F. Can metal-nitrogen-carbon single-atom catalysts boost the electroreduction of carbon monoxide. JACS Au 2023, 3, 943–952.

[21]

Dong, W. F.; Zhang, N.; Li, S. X.; Min, S. X.; Peng, J.; Liu, W. Y.; Zhan, D. P.; Bai, H. C. A Mn single atom catalyst with Mn–N2O2 sites integrated into carbon nanosheets for efficient electrocatalytic CO2 reduction. J. Mater. Chem. A 2022, 10, 10892–10901.

[22]

Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.

[23]

Zhou, Y. Z.; Zhou, Q.; Liu, H. J.; Xu, W. J.; Wang, Z. X.; Qiao, S. C.; Ding, H. H.; Chen, D. L.; Zhu, J. F.; Qi, Z. M. et al. Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction. Nat. Commun. 2023, 14, 3776.

[24]

Zhang, W.; Liu, D.; Liu, T.; Ding, C. L.; Chen, T.; Li, Y. M.; Liu, X. K.; Wang, L.; Li, C. L.; He, J. F. et al. Coordinately unsaturated nickel single atom electrocatalyst for efficient CO2 conversion. Nano Res. 2023, 16, 10873–10880.

[25]

Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116–3122.

[26]

Zhu, S. Q.; Li, T. H.; Cai, W. B.; Shao, M. H. CO2 electrochemical reduction As probed through infrared spectroscopy. ACS Energy Lett. 2019, 4, 682–689.

[27]

Mohd Adli, N.; Shan, W. T.; Hwang, S.; Samarakoon, W.; Karakalos, S.; Li, Y.; Cullen, D. A.; Su, D.; Feng, Z. X.; Wang, G. F. et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 1022–1032.

[28]

Chen, Y.; Zhao, J.; Pan, X. L.; Li, L.; Yu, Z. N.; Wang, X. D.; Ma, T. Y.; Lin, S.; Lin, J. Tuning the inter-metal interaction between Ni and Fe atoms in dual-atom catalysts to boost CO2 electroreduction. Angew. Chem., Int. Ed. 2024, 63, e202411543.

[29]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[30]

Li, L.; Dai, X. Y.; Lu, M. C.; Guo, C. F.; Wabaidur, S. M.; Wu, X. L.; Lou, Z. R.; Zhong, Y. J.; Hu, Y. Electron-enriched single-Pd-sites on g-C3N4 nanosheets achieved by in-situ anchoring twinned Pd nanoparticles for efficient CO2 photoreduction. Adv. Powder Mater. 2024, 3, 100170.

[31]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[32]

Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.

[33]

Zhang, J. W.; Zeng, G. M.; Chen, L. L.; Lai, W. C.; Yuan, Y. L.; Lu, Y. F.; Ma, C.; Zhang, W. H.; Huang, H. W. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Res. 2022, 15, 4014–4022.

[34]

Liu, Z.; Liu, Y. X.; Zhang, J. Q.; Cao, T.; Sun, Z. Y.; Liu, J. Z.; Shang, H. S. Asymmetrically coordinated single atom Cu catalyst with unsaturated C–Cu–N structure for CO2 reduction to CO. Nano Res. 2024, 17, 3911–3918.

[35]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[36]

Zhan, X. Y.; Fan, X. Y.; Li, W. X.; Tan, X. Y.; Robertson, A. W.; Muhammad, U.; Sun, Z. Y. Coupled metal atomic pairs for synergistic electrocatalytic CO2 reduction. Matter 2024, 7, 4206–4232.

[37]

Yao, Z. B.; Cheng, H.; Xu, Y. F.; Zhan, X. Y.; Hong, S.; Tan, X. Y.; Wu, T. S.; Xiong, P.; Soo, Y. L.; Li, M. M. J. et al. Hydrogen radical-boosted electrocatalytic CO2 reduction using Ni-partnered heteroatomic pairs. Nat. Commun. 2024, 15, 9881.

[38]

Jin, Z. Y.; Li, P. P.; Meng, Y.; Fang, Z. W.; Xiao, D.; Yu, G. H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622.

[39]

Xia, W.; Xie, Y. J.; Jia, S. Q.; Han, S. T.; Qi, R. J.; Chen, T.; Xing, X. Q.; Yao, T.; Zhou, D. W.; Dong, X. et al. Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 2023, 145, 17253–17264.

[40]

Liang, Z.; Song, L. P.; Sun, M. Z.; Huang, B. L.; Du, Y. P. Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn-Ln dual atomic catalysts. Sci. Adv. 2021, 7, eabl4915.

[41]

Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. P. et al. Quasi-covalently coupled Ni–Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671.

[42]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[43]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[44]

Zhang, M. Y.; Zhou, D. Y.; Mu, X. Q.; Wang, D. S.; Liu, S. L.; Dai, Z. H. Regulating the critical intermediates of dual-atom catalysts for CO2 electroreduction. Small 2024, 20, 2402050.

[45]

Hao, J. C.; Zhu, H.; Zhao, Q.; Hao, J. C.; Lu, S. L.; Wang, X.; Duan, F.; Du, M. L. Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site. Nano Res. 2023, 16, 8863–8870.

[46]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[47]

Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20–28.

[48]

Xiao, Z. H.; Zhao, L.; Yu, Z. Q.; Zhang, M. X.; Li, S. P.; Zhang, R. H.; Ayub, M.; Ma, X. L.; Ning, G. Q.; Xu, C. M. Multilayered graphene endowing superior dispersibility for excellent low temperature performance in lithium-ion capacitor as both anode and cathode. Chem. Eng. J. 2022, 429, 132358.

[49]

Xiao, Z. H.; Chen, Z.; Sun, Y. K.; Li, T.; Zhao, L.; Li, Z. C.; Yu, Z. Q.; Gao, Z. F.; Ma, X. L.; Xu, C. M. Spherical nano-graphite anode derived from electrochemical stripping for high performance Li-ion capacitors. Chem. Eng. J. 2023, 474, 145623.

[50]

To, J. W. F.; He, J. J.; Mei, J. G.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S. C.; Bae, W. G.; Pan, L. J.; Tok, J. B. H. et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009.

[51]

Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe–N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

[52]

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

[53]

Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

[54]

Mills, P.; Sullivan, J. L. A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 1983, 16, 723–732.

[55]

Wan, X.; Liu, Q. T.; Liu, J. Y.; Liu, S. Y.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Yu, R. H.; Shui, J. L. Iron atom-cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nat. Commun. 2022, 13, 2963.

[56]

Ramesh, K.; Chen, L. W.; Chen, F. X.; Liu, Y.; Wang, Z.; Han, Y. F. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal. Today 2008, 131, 477–482.

[57]

Sun, H. X.; Zaera, F. Chemical vapor deposition of manganese metallic films on silicon oxide substrates. J. Phys. Chem. C 2012, 116, 23585–23595.

[58]

Zhang, Q.; Tsai, H. J.; Li, F. H.; Wei, Z. M.; He, Q. Y.; Ding, J.; Liu, Y. H.; Lin, Z. Y.; Yang, X. J.; Chen, Z. Y. et al. Boosting the proton-coupled electron transfer via Fe–P atomic pair for enhanced electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202311550.

[59]

Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

[60]

Guo, Z.; Xie, Y. B.; Xiao, J. D.; Zhao, Z. J.; Wang, Y. X.; Xu, Z. M.; Zhang, Y.; Yin, L. C.; Cao, H. B.; Gong, J. L. Single-atom Mn–N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J. Am. Chem. Soc. 2019, 141, 12005–12010.

[61]

Zhuansun, M. J.; Liu, Y.; Lu, R. H.; Zeng, F.; Xu, Z. Y.; Wang, Y.; Yang, Y. Y.; Wang, Z. Y.; Zheng, G. F.; Wang, Y. H. Promoting CO2 electroreduction to multi-carbon products by hydrophobicity-induced electro-kinetic retardation. Angew. Chem., Int. Ed. 2023, 62, e202309875.

[62]

Li, S. J.; Dong, X.; Zhao, Y. H.; Mao, J. N.; Chen, W.; Chen, A. H.; Song, Y. F.; Li, G. H.; Jiang, Z.; Wei, W. et al. Chloride ion adsorption enables ampere-level CO2 electroreduction over silver hollow fiber. Angew. Chem., Int. Ed. 2022, 61, e202210432.

[63]

Chang, X. X.; Li, J.; Xiong, H. C.; Zhang, H. C.; Xu, Y. F.; Xiao, H.; Lu, Q.; Xu, B. J. C–C coupling is unlikely to be the rate-determining step in the formation of C2+ products in the copper-catalyzed electrochemical reduction of CO. Angew. Chem. , Int. Ed. 2022, 61, e202111167.

[64]

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

[65]

Vijay, S.; Ju, W.; Brückner, S.; Tsang, S. C.; Strasser, P.; Chan, K. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 2021, 4, 1024–1031.

[66]

Zhao, Y. F.; Jiang, W. J.; Zhang, J. Q.; Lovell, E. C.; Amal, R.; Han, Z. J.; Lu, X. Y. Anchoring sites engineering in single-atom catalysts for highly efficient electrochemical energy conversion reactions. Adv. Mater. 2021, 33, 2102801.

Nano Research
Article number: 94907249
Cite this article:
Sun X, Zhang B, Lu Q, et al. Tailoring the proximity of iron and manganese atomic sites for efficient CO2 electroreduction reaction. Nano Research, 2025, 18(3): 94907249. https://doi.org/10.26599/NR.2025.94907249
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return