PDF (23.2 MB)
Collect
Submit Manuscript
Show Outline
Figures (11)

Show 2 more figures Hide 2 figures
Review Article | Open Access | Online First

Atomic-level magnetism modulation of nanocrystals for biomedical imaging

Yuehao Gan1,3Hui Du1Qiyue Wang1,3Fangyuan Li2,3 ()Daishun Ling1,3 ()
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
World Laureates Association (WLA) Laboratories, Shanghai 201203, China
Show Author Information

Graphical Abstract

View original image Download original image
Through the atomic-level magnetism modulation, such as metal alloying and ion doping, distance-dependent magnetic interactions and metal-ligand interaction-mediated magnetism modulation, the key magnetic parameters such as saturation magnetization (Ms), magnetic moment (μB), and coercivity can be precisely tuned to meet specific imaging requirements and improve the performance of nanocrystals in biomedical applications.

Abstract

Structural regulation of magnetic nanomaterials has been pivotal for enhancing their magnetic properties and improving their performance in biomedical imaging. While numerous studies have focused on mesoscopic tuning of these nanocrystals, the desired level of precision has not been consistently achieved. The advent of atomic-level manipulation of nanostructures presents a sophisticated approach to the precise modulation of magnetism. However, a comprehensive understanding of how to modulate magnetism at the atomic level has remained elusive, impeding the advancement of this technique. This review aims to bridge this gap by conducting a thorough examination of the application of atomic-level techniques in magnetically modulating nanocrystals for biomedical imaging. It will synthesize current knowledge, elucidate the fundamental principles of atomic-level magnetic modulation, and highlight the contemporary biomedical imaging applications of these nanocrystals. The review will also discuss the challenges currently encountered and provide insights into emerging trends, suggesting potential directions for future research, thereby guiding the development of this rapidly evolving field.

References

[1]

Wu, G.; Zelenay, P. Activity versus stability of atomically dispersed transition-metal electrocatalysts. Nat. Rev. Mater. 2024, 9, 643–656.

[2]

Santos, P. J.; Gabrys, P. A.; Zornberg, L. Z.; Lee, M. S.; Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 2021, 591, 586–591.

[3]

Jain, R.; Lakhnot, A. S.; Bhimani, K.; Sharma, S.; Mahajani, V.; Panchal, R. A.; Kamble, M.; Han, F. D.; Wang, C. S.; Koratkar, N. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 2022, 7, 736–746.

[4]

Ma, B. J.; Bianco, A. Regulation of biological processes by intrinsically chiral engineered materials. Nat. Rev. Mater. 2023, 8, 403–413.

[5]

Zheng, Y.; Slade, T. J.; Hu, L.; Tan, X. Y.; Luo, Y. B.; Luo, Z. Z.; Xu, J. W.; Yan, Q. Y.; Kanatzidis, M. G. Defect engineering in thermoelectric materials: What have we learned. Chem. Soc. Rev. 2021, 50, 9022–9054.

[6]

Lu, C.; Han, L. B.; Wang, J.; Wan, J. C.; Song, G. S.; Rao, J. H. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem. Soc. Rev. 2021, 50, 8102–8146.

[7]

Hang, Y. J.; Wang, A. Y.; Wu, N. Q. Plasmonic silver and gold nanoparticles: Shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem. Soc. Rev. 2024, 53, 2932–2971.

[8]

Chen, J. J.; Xie, H.; Liu, L. Z.; Guan, H.; You, Z. S.; Zou, L. J.; Jin, H. J. Strengthening gold with dispersed nanovoids. Science 2024, 385, 629–633.

[9]

Liu, X. Y.; Lyu, D.; Merlet, C.; Leesmith, M. J. A.; Hua, X.; Xu, Z.; Grey, C. P.; Forse, A. C. Structural disorder determines capacitance in nanoporous carbons. Science 2024, 384, 321–325.

[10]

Zhou, Y. Y.; Herz, L. M.; Jen, A. K. Y.; Saliba, M. Advances and challenges in understanding the microscopic structure-property-performance relationship in perovskite solar cells. Nat. Energy 2022, 7, 794–807.

[11]

Hu, X.; Zhang, B.; Zhang, M.; Liang, W. S.; Hong, B. Z.; Ma, Z. Y.; Sheng, J. P.; Liu, T. Q.; Yang, S. F.; Liang, Z. Y. et al. An artificial metabzyme for tumour-cell-specific metabolic therapy. Nat. Nanotechnol. 2024, 19, 1712–1722.

[12]

Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.

[13]

Roca, A. G.; Gutiérrez, L.; Gavilán, H.; Fortes Brollo, M. E.; Veintemillas-Verdaguer, S.; Morales, M. D. P. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv. Drug Deliv. Rev. 2019, 138, 68–104.

[14]

Ni, D. L.; Bu, W. B.; Ehlerding, E. B.; Cai, W. B.; Shi, J. L. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2017, 46, 7438–7468.

[15]

Jeon, M.; Halbert, M. V.; Stephen, Z. R.; Zhang, M. Q. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv. Mater. 2021, 33, 1906539.

[16]

Xie, X. L.; Zhai, J.; Zhou, X. Y.; Guo, Z. J.; Lo, P. C.; Zhu, G. Y.; Chan, K. W. Y.; Yang, M. S. Magnetic particle imaging: From tracer design to biomedical applications in vasculature abnormality. Adv. Mater. 2024, 36, 2306450.

[17]

Zhao, Z. H.; Li, M. Y.; Zeng, J.; Huo, L. L.; Liu, K.; Wei, R. X.; Ni, K. Y.; Gao, J. H. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact. Mater. 2022, 12, 214–245.

[18]

Zhou, Z. J.; Yang, L. J.; Gao, J. H.; Chen, X. Y. Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 2019, 31, 1804567.

[19]

Hadadian, Y.; Masoomi, H.; Dinari, A.; Ryu, C.; Hwang, S.; Kim, S.; Cho, B. K.; Lee, J. Y.; Yoon, J. From low to high saturation magnetization in magnetite nanoparticles: The crucial role of the molar ratios between the chemicals. ACS Omega 2022, 7, 15996–16012.

[20]

Ma, Z. H.; Mohapatra, J.; Wei, K. C.; Liu, J. P.; Sun, S. H. Magnetic nanoparticles: Synthesis, anisotropy, and applications. Chem. Rev. 2023, 123, 3904–3943.

[21]

Tay, Z. W.; Savliwala, S.; Hensley, D. W.; Fung, K. L. B.; Colson, C.; Fellows, B. D.; Zhou, X. Y.; Huynh, Q.; Lu, Y.; Zheng, B. et al. Superferromagnetic nanoparticles enable order-of-magnitude resolution & sensitivity gain in magnetic particle imaging. Small Methods 2021, 5, 2100796.

[22]

Wang, Q. Y.; Ma, X. B.; Liao, H. W.; Liang, Z. Y.; Li, F. Y.; Tian, J.; Ling, D. S. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020, 14, 2053–2062.

[23]

Song, G. S.; Kenney, M.; Chen, Y. S.; Zheng, X. C.; Deng, Y.; Chen, Z.; Wang, S. X.; Gambhir, S. S.; Dai, H. J.; Rao, J. H. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat. Biomed. Eng. 2020, 4, 325–334.

[24]

Zeng, J.; Huo, L. L.; Wang, Z. Y.; Sun, X.; Guo, Y.; Li, M. Y.; Tan, M. Y.; Zhu, S. Q.; Fang, J. Q.; Zhao, Z. H. Effect of hollow structures on T1 and T2 relaxivities and their application in accurate tumor imaging. Chem. Mater. 2023, 35, 7643–7654.

[25]

Abdibastami, A.; Gloag, L.; Prada, J. P.; Duong, H. T. K.; Shanehsazzadeh, S.; Sulway, S. A.; Cheong, S.; Hackbarth, H.; Bedford, N. M.; Jameson, G. N. L. et al. How size and composition of cobalt doped iron oxide nanoparticle tracers enhance magnetic particle imaging performance. Chem. Mater. 2024, 36, 8773–8781.

[26]

Nguyen, M. D.; Deng, L. Z.; Lee, J. M.; Resendez, K. M.; Fuller, M.; Hoijang, S.; Robles-Hernandez, F.; Chu, C. W.; Litvinov, D.; Hadjiev, V. G. et al. Magnetic tunability via control of crystallinity and size in polycrystalline iron oxide nanoparticles. Small 2024, 20, 2402940.

[27]

Mao, Y.; Li, Y.; Zang, F. C.; Yu, H. L.; Yan, S.; Song, Q. S.; Qin, Z. G.; Sun, J. F.; Chen, B.; Huang, X. et al. Continuous synthesis of extremely small-sized iron oxide nanoparticles used for T1-weighted magnetic resonance imaging via a fluidic reactor. Sci. China Mater. 2022, 65, 1646–1654.

[28]

Piché, D.; Tavernaro, I.; Fleddermann, J.; Lozano, J. G.; Varambhia, A.; Maguire, M. L.; Koch, M.; Ukai, T.; Hernández Rodríguez, A. J.; Jones, L. et al. Targeted T1 magnetic resonance imaging contrast enhancement with extraordinarily small CoFe2O4 nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 6724–6740.

[29]

Novoa, J. J.; Deumal, M.; Jornet-Somoza, J. Calculation of microscopic exchange interactions and modelling of macroscopic magnetic properties in molecule-based magnets. Chem. Soc. Rev. 2011, 40, 3182–3212.

[30]

Zhao, J. J.; Huang, X. M.; Jin, P.; Chen, Z. F. Magnetic properties of atomic clusters and endohedral metallofullerenes. Coordin. Chem. Rev. 2015, 289–290, 315–340

[31]

Yang, Y.; Chen, C. C.; Scott, M. C.; Ophus, C.; Xu, R.; Pryor, A.; Wu, L.; Sun, F.; Theis, W.; Zhou, J. H. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 2017, 542, 75–79.

[32]

González-Herrero, H.; Gómez-Rodríguez, J. M.; Mallet, P.; Moaied, M.; Palacios, J. J.; Salgado, C.; Ugeda, M. M.; Veuillen, J. Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441.

[33]

Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.

[34]

Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G. Atomic level structural modulation during the structural relaxation and its effect on magnetic properties of Fe81Si4B10P4Cu1 nanocrystalline alloy. J. Magn. Magn. Mater. 2018, 456, 274–280.

[35]

Gan, Y. H.; Zhang, J.; Lei, S. L.; Yan, M.; Xie, W. T.; Qi, X. Y.; Wang, H. J.; Xiao, J. M.; Chen, S. Y.; Li, S. J. et al. Atomically precise multi-domain Gd x Fe3- x O4 nanoclusters with modulated contrast properties for T2-weighted magnetic resonance imaging of early orthotopic cancer. Chem. Eng. J. 2022, 429, 132255.

[36]

Liang, Z. Y.; Xie, S. Z.; Wang, Q. Y.; Zhang, B.; Xiao, L.; Wang, C. H.; Liu, X.; Chen, Y.; Yang, S. F.; Du, H. et al. Ligand-induced atomically segregation-tunable alloy nanoprobes for enhanced magnetic resonance imaging. ACS Nano 2024, 18, 15249–15260.

[37]

Liang, Z. Y.; Xiao, L.; Wang, Q. Y.; Zhang, B.; Mo, W. K.; Xie, S. Z.; Liu, X.; Chen, Y.; Yang, S. F.; Du, H. et al. Ligand-mediated magnetism-conversion nanoprobes for activatable ultra-high field magnetic resonance imaging. Angew. Chem., Int. Ed. 2024, 63, e202318948.

[38]

Salafranca, J.; Gazquez, J.; Pérez, N.; Labarta, A.; Pantelides, S. T.; Pennycook, S. J.; Batlle, X.; Varela, M. Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett. 2012, 12, 2499–2503.

[39]

Laha, S. S.; Thorat, N. D.; Singh, G.; Sathish, C. I.; Yi, J. B.; Dixit, A.; Vinu, A. Rare-earth doped iron oxide nanostructures for cancer theranostics: Magnetic hyperthermia and magnetic resonance imaging. Small 2022, 18, 2104855.

[40]

Miao, Y. Q.; Zhang, H.; Cai, J.; Chen, Y. M.; Ma, H. J.; Zhang, S.; Yi, J. B.; Liu, X. L.; Bay, B. H.; Guo, Y. K. et al. Structure-relaxivity mechanism of an ultrasmall ferrite nanoparticle T1 MR contrast agent: The impact of dopants controlled crystalline core and surface disordered shell. Nano Lett. 2021, 21, 1115–1123.

[41]

Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

[42]

Hens, Z.; De Roo, J. Atomically precise nanocrystals. J. Am. Chem. Soc. 2020, 142, 15627–15637.

[43]

Fang, H. Y.; Mahalingam, H.; Li, X. Z.; Han, X.; Qiu, Z. Z.; Han, Y. X.; Noori, K.; Dulal, D.; Chen, H. F.; Lyu, P. et al. Atomically precise vacancy-assembled quantum antidots. Nat. Nanotechnol. 2023, 18, 1401–1408.

[44]

Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.

[45]

Hou, Z. Q.; Cui, C. H.; Li, Y. N.; Gao, Y. J.; Zhu, D. M.; Gu, Y. F.; Pan, G. Y.; Zhu, Y. Q.; Zhang, T. Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction. Adv. Mater. 2023, 35, 2209876.

[46]

Choi, J. S.; Kim, S.; Yoo, D.; Shin, T. H.; Kim, H.; Gomes, M. D.; Kim, S. H.; Pines, A.; Cheon, J. Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets. Nat. Mater. 2017, 16, 537–542.

[47]

Du, H.; Wang, Q. Y.; Liang, Z. Y.; Li, Q. L.; Li, F. Y.; Ling, D. S. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging. Nanoscale 2022, 14, 17483–17499.

[48]

Du, H.; Wang, Q. Y.; Zhang, B.; Liang, Z. Y.; Huang, C. Y.; Shi, D.; Li, F. Y.; Ling, D. S. Structural defect-enabled magnetic neutrality nanoprobes for ultra-high-field magnetic resonance imaging of isolated tumor cells in vivo. Adv. Mater. 2024, 36, 2401538.

[49]

Guan, G. Q.; Zhang, C.; Liu, H. Y.; Wang, Y. J.; Dong, Z.; Lu, C.; Nan, B.; Yue, R. Y.; Yin, X.; Zhang, X. B. et al. Ternary alloy PtWMn as a Mn nanoreservoir for high-field MRI monitoring and highly selective ferroptosis therapy. Angew. Chem., Int. Ed. 2022, 61, e202117229.

[50]

Liu, H. J.; Jiang, Y.; Li, Q. Q.; Hai, G. T.; Gu, C.; Du, Y. P. Interface-triggered spin-magnetic effect in rare earth intraparticle heterostructured nanoalloys for boosting hydrogen evolution. Angew. Chem., Int. Ed. 2024, 63, e202412591.

[51]

Yu, M.; Li, S. M.; Ren, X. L.; Liu, N.; Guo, W. N.; Xue, J.; Tan, L. F.; Fu, C. H.; Wu, Q.; Niu, M. et al. Magnetic bimetallic heterointerface nanomissiles with enhanced microwave absorption for microwave thermal/dynamics therapy of breast cancer. ACS Nano 2024, 18, 3636–3650.

[52]

Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.

[53]

Liang, Z. Y.; Wang, Q. Y.; Liao, H. W.; Zhao, M.; Lee, J.; Yang, C.; Li, F. Y.; Ling, D. S. Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging. Nat. Commun. 2021, 12, 3840.

[54]

Zhang, T. T.; Wang, Z. J.; Xiang, H. J.; Xu, X.; Zou, J.; Lu, C. C. Biocompatible superparamagnetic europium-doped iron oxide nanoparticle clusters as multifunctional nanoprobes for multimodal in vivo imaging. ACS Appl. Mater. Interfaces 2021, 13, 33850–33861.

[55]

Fernández-Barahona, I.; Gutiérrez, L.; Veintemillas-Verdaguer, S.; Pellico, J.; del Puerto Morales, M.; Catala, M.; del Pozo, M. A.; Ruiz-Cabello, J.; Herranz, F. Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: One-pot synthesis and in vivo targeted molecular imaging. ACS Omega 2019, 4, 2719–2727.

[56]

Ma, Y. Y.; Xia, J. B.; Yao, C. Y.; Yang, F.; Stanciu, S. G.; Li, P.; Jin, Y. H.; Chen, T. X.; Zheng, J. J.; Chen, G. P. et al. Precisely tuning the contrast properties of Zn x Fe3- x O4 nanoparticles in magnetic resonance imaging by controlling their doping content and size. Chem. Mater. 2019, 31, 7255–7264.

[57]

Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99.

[58]

Shin, T. H.; Kang, S.; Park, S.; Choi, J. S.; Kim, P. K.; Cheon, J. A magnetic resonance tuning sensor for the MRI detection of biological targets. Nat. Protoc. 2018, 13, 2664–2684.

[59]

Gao, J. H.; Wang, Y.; Meng, X. F.; Wang, X. S.; Han, F.; Xing, H.; Lv, G. L.; Zhang, L.; Wu, S. M.; Jiang, X. W. et al. A FAPα-activated MRI nanoprobe for precise grading diagnosis of clinical liver fibrosis. Nat. Commun. 2024, 15, 8036.

[60]

Dai, J. D.; Liu, Z.; Wang, L. L.; Huang, G. M.; Song, S. J.; Chen, C.; Wu, T.; Xu, X.; Hao, C. J.; Bian, Y. J. et al. A telomerase-activated magnetic resonance imaging probe for consecutively monitoring tumor growth kinetics and in situ screening inhibitors. J. Am. Chem. Soc. 2023, 145, 1108–1117.

[61]

Wang, Z. L.; Xue, X. D.; Lu, H. W.; He, Y. X.; Lu, Z. W.; Chen, Z. J.; Yuan, Y.; Tang, N.; Dreyer, C. A.; Quigley, L. et al. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nat. Nanotechnol. 2020, 15, 482–490.

[62]

Liu, J. P.; Li, L.; Zhang, R.; Ping Xu, Z. P. The adjacent effect between Gd(III) and Cu(II) in layered double hydroxide nanoparticles synergistically enhances T1-weighted magnetic resonance imaging contrast. Nanoscale Horiz. 2023, 8, 279–290.

[63]

Matus, M. F.; Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat. Rev. Mater. 2023, 8, 372–389.

[64]

Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72–77.

[65]

Liu, P. X.; Qin, R. X.; Fu, G.; Zheng, N. F. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131.

[66]

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

[67]

Bhattacharjee, K.; Prasad, B. L. V. Surface functionalization of inorganic nanoparticles with ligands: A necessary step for their utility. Chem. Soc. Rev. 2023, 52, 2573–2595.

[68]

Wang, W. T.; Mattoussi, H. Engineering the bio-nano interface using a multifunctional coordinating polymer coating. Acc. Chem. Res. 2020, 53, 1124–1138.

[69]

Lin, G. Y.; Zhang, M. Q. Ligand chemistry in antitumor theranostic nanoparticles. Acc. Chem. Res. 2023, 56, 1578–1590.

[70]

Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.

[71]

Calvin, J. J.; Brewer, A. S.; Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 2022, 1, 127–137.

[72]

Parkinson, G. S.; Mulakaluri, N.; Losovyj, Y.; Jacobson, P.; Pentcheva, R.; Diebold, U. Semiconductor-half metal transition at the Fe3O4 (001) surface upon hydrogen adsorption. Phys. Rev. B 2010, 82, 125413.

[73]

Kurahashi, M.; Sun, X.; Yamauchi, Y. Recovery of the half-metallicity of an Fe3O4 (100) surface by atomic hydrogen adsorption. Phys. Rev. B 2010, 81, 193402.

[74]

Wang, C.; Sun, W. B.; Zhang, J.; Zhang, J. P.; Guo, Q. H.; Zhou, X. Y.; Fan, D. D.; Liu, H. R.; Qi, M.; Gao, X. H. et al. An electric-field-responsive paramagnetic contrast agent enhances the visualization of epileptic foci in mouse models of drug-resistant epilepsy. Nat. Biomed. Eng. 2021, 5, 278–289.

[75]

Yao, J. T.; Yang, Z. W.; Huang, L. D.; Yang, C.; Wang, J. X.; Cao, Y.; Hao, L.; Zhang, L.; Zhang, J. Q.; Li, P. et al. Low-intensity focused ultrasound-responsive ferrite-encapsulated nanoparticles for atherosclerotic plaque neovascularization theranostics. Adv. Sci. 2021, 8, 2100850.

[76]

Wen, L. Y.; Fu, X. M.; Zhang, H.; Ye, P. F.; Fu, H.; Zhou, Z. Q.; Sun, R.; Xu, T.; Fu, C.; Zhu, C. C. et al. Tailoring zinc ferrite nanoparticle surface coating for macrophage-affinity magnetic resonance imaging of atherosclerosis. ACS Appl. Mater. Interfaces 2024, 16, 13496–13508.

[77]

Montiel Schneider, M. G.; Martín, M. J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics 2022, 14, 204.

[78]

Wong, X. Y.; Sena-Torralba, A.; Álvarez-Diduk, R.; Muthoosamy, K.; Merkoçi, A. Nanomaterials for nanotheranostics: Tuning their properties according to disease needs. ACS Nano 2020, 14, 2585–2627.

[79]

Zeng, W. W.; Wu, Z. Y.; Xu, Y.; Yang, W. T.; Zhang, B. B. Furin-catalyzed enhanced magnetic resonance imaging probe for differential diagnosis of malignant breast cancers. Anal. Chem. 2024, 96, 6707–6714.

[80]

Yue, R. Y.; Li, Z.; Liu, H. Y.; Wang, Y. J.; Li, Y. H.; Yin, R.; Yin, B. L.; Qian, H. S.; Kang, H.; Zhang, X. B. et al. Imaging-guided companion diagnostics in radiotherapy by monitoring APE1 activity with afterglow and MRI imaging. Nat. Commun. 2024, 15, 6349.

[81]

Maas, M. B.; Lev, M. H.; Ay, H.; Singhal, A. B.; Greer, D. M.; Smith, W. S.; Harris, G. J.; Halpern, E.; Kemmling, A.; Koroshetz, W. J. et al. Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke 2009, 40, 3001–3005.

[82]

Liebeskind, D. S.; Tomsick, T. A.; Foster, L. D.; Yeatts, S. D.; Carrozzella, J.; Demchuk, A. M.; Jovin, T. G.; Khatri, P.; von Kummer, R.; Sugg, R. M. et al. Collaterals at angiography and outcomes in the interventional management of stroke (IMS) III trial. Stroke 2014, 45, 759–764.

[83]

Shin, T. H.; Kim, P. K.; Kang, S.; Cheong, J.; Kim, S.; Lim, Y.; Shin, W.; Jung, J. Y.; Lah, J. D.; Choi, B. W. et al. High-resolution T1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat. Biomed. Eng. 2021, 5, 252–263.

[84]

Zhang, P. S.; Cheng, J. W.; Lu, Y. J.; Zhang, N.; Wu, X. A.; Lin, H.; Li, W.; Wang, J.; Winnik, M. A.; Gan, Z. H. et al. Hypersensitive MR angiography based on interlocking stratagem for diagnosis of cardiac-cerebral vascular diseases. Nat. Commun. 2023, 14, 6149.

[85]

Li, W. Y.; Zhang, R. R.; Zhang, X. Y.; Wu, S.; Ma, T. C.; Hou, Y.; Zeng, J. F.; Gao, M. Y. Precise diagnosis of cardiac-cerebral vascular diseases with magnetic resonance imaging-based nanoprobes. iRADIOLOGY 2024, 2, 264–284.

[86]

Jolly, S. S.; Yusuf, S.; Cairns, J.; Niemelä, K.; Xavier, D.; Widimsky, P.; Budaj, A.; Niemelä, M.; Valentin, V.; Lewis, B. S. et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): A randomised, parallel group, multicentre trial. Lancet 2011, 377, 1409–1420.

[87]

Ran, Y. C.; Wang, Y. T.; Zhu, M.; Wu, X.; Malhotra, A.; Lei, X. W.; Zhang, F. F.; Wang, X.; Xie, S. S.; Zhou, J. et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke. Stroke 2020, 51, 659–662.

[88]

Dirnagl, U.; Iadecola, C.; Moskowitz, M. A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999, 22, 391–397.

[89]

Ouriel, K. Peripheral arterial disease. Lancet 2001, 358, 1257–1264.

[90]

Reinecke, H.; Unrath, M.; Freisinger, E.; Bunzemeier, H.; Meyborg, M.; Luders, F.; Gebauer, K.; Roeder, N.; Berger, K.; Malyar, N. M. Peripheral arterial disease and critical limb ischaemia: Still poor outcomes and lack of guideline adherence. Eur. Heart J. 2015, 36, 932–938.

[91]

Wilcox, N. S.; Amit, U.; Reibel, J. B.; Berlin, E.; Howell, K.; Ky, B. Cardiovascular disease and cancer: Shared risk factors and mechanisms. Nat. Rev. Cardiol. 2024, 21, 617–631.

[92]

Galli, M.; Niccoli, G.; De Maria, G.; Brugaletta, S.; Montone, R. A.; Vergallo, R.; Benenati, S.; Magnani, G.; D’Amario, D.; Porto, I. et al. Coronary microvascular obstruction and dysfunction in patients with acute myocardial infarction. Nat. Rev. Cardiol. 2024, 21, 283–298.

[93]

GBD 2017 US Neurological Disorders Collaborators. Burden of neurological disorders across the US from 1990-2017: A global burden of disease study. JAMA Neurol. 2021, 78, 165–176.

[94]

GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: A systematic analysis for the global burden of disease study 2021. Lancet Neurol. 2024, 23, 344–381.

[95]

Mahammedi, A.; Saba, L.; Vagal, A.; Leali, M.; Rossi, A.; Gaskill, M.; Sengupta, S.; Zhang, B.; Carriero, A.; Bachir, S. et al. Imaging of neurologic disease in hospitalized patients with COVID-19: An Italian multicenter retrospective observational study. Radiology 2020, 297, E270–E273.

[96]

Politis, M.; Piccini, P. Positron emission tomography imaging in neurological disorders. J. Neurol. 2012, 259, 1769–1780.

[97]

Wu, Z. Y.; Yang, W. T.; Zhang, B. B. Enzyme-catalyzed molecular MR imaging of tumors. TrAC Trends Anal. Chem. 2024, 178, 117848.

[98]

Zhao, Y. J.; Ding, Y.; Lau, V.; Man, C.; Su, S.; Xiao, L. F.; Leong, A. T. L.; Wu, E. X. Whole-body magnetic resonance imaging at 0.05 tesla. Science 2024, 384, eadm7168.

[99]

Zhang, J. Y.; Yu, L. D.; Yu, M. H.; Yu, D. H.; Chen, Y.; Zhang, J. Engineering nanoprobes for magnetic resonance imaging of brain diseases. Chem. Eng. J. 2024, 481, 148472.

[100]

Chen, Y.; Liang, Z. Y.; Wang, Q. Y.; Xiao, L.; Xie, S. Z.; Yang, S. F.; Liu, X.; Ling, D. S.; Li, F. Y. Alpha-synuclein oligomers driven T1-T2 switchable nanoprobes for early and accurate diagnosis of parkinson’s disease. Adv. Mater. 2024, 36, 2310404.

[101]

Liu, J. M.; Chen, C. Y.; Chen, H. T.; Huang, C.; Ren, Q. F.; Sun, M. Y.; Tao, J.; Lin, B. Q.; Zhao, P. Brain glucose activated MRI contrast agent for early diagnosis of Alzheimer’s disease. Anal. Chem. 2022, 94, 16213–16221.

[102]

Wang, Q. Y.; Wang, T.; Yang, S. F.; Du, H.; Zhang, B.; Cui, S. R.; Ling, D. S.; Li, F. Y. Highly sensitive diagnosis of extracellular calcium ions associated brain diseases using Ca2+-dependent T2-T1 switchable magnetic nanosensors. Adv. Funct. Mater. 2024, 34, 2313286.

[103]

Qian, J.; Yang, Z. C.; Lyu, J. K.; Yao, Q. F.; Xie, J. P. Molecular interactions in atomically precise metal nanoclusters. Precis. Chem. 2024, 2, 495–517.

[104]

Pollice, R.; dos Passos Gomes, G.; Aldeghi, M.; Hickman, R. J.; Krenn, M.; Lavigne, C.; Lindner-D’Addario, M.; Nigam, A.; Ser, C. T.; Yao, Z. et al. Data-driven strategies for accelerated materials design. Acc. Chem. Res. 2021, 54, 849–860.

[105]

Tao, H. C.; Wu, T. Y.; Aldeghi, M.; Wu, T. C.; Aspuru-Guzik, A.; Kumacheva, E. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 2021, 6, 701–716.

[106]

Jordan, M. I.; Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260.

[107]

Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555.

[108]

Yang, L.; Wang, H.; Leng, D. Y.; Fang, S. P.; Yang, Y. N.; Du, Y. R. Machine learning applications in nanomaterials: Recent advances and future perspectives. Chem. Eng. J. 2024, 500, 156687.

[109]

Benavides-Hernández, J.; Dumeignil, F. From characterization to discovery: Artificial intelligence, machine learning and high-throughput experiments for heterogeneous catalyst design. ACS Catal. 2024, 14, 11749–11779.

[110]

Hsu, J. C.; Tang, Z. M.; Eremina, O. E.; Sofias, A. M.; Lammers, T.; Lovell, J. F.; Zavaleta, C.; Cai, W. B.; Cormode, D. P. Nanomaterial-based contrast agents. Nat. Rev. Methods Primer 2023, 3, 30.

[111]

Leong, H. S.; Butler, K. S.; Brinker, C. J.; Azzawi, M.; Conlan, S.; Dufés, C.; Owen, A.; Rannard, S.; Scott, C.; Chen, C. Y. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 2019, 14, 629–635.

[112]

Gavilán, H.; Rizzo, G. M. R.; Silvestri, N.; Mai, B. T.; Pellegrino, T. Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nat. Protoc. 2023, 18, 783–809.

[113]

Park, W.; Shin, H.; Choi, B.; Rhim, W. K.; Na, K.; Keun Han, D. Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 2020, 114, 100686.

[114]

Deng, X. J.; Wang, J. H.; Yu, S. S.; Tan, S. Y.; Yu, T. T.; Xu, Q. X.; Chen, N. H.; Zhang, S. Q.; Zhang, M. R.; Hu, K. et al. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. Exploration 2024, 4, 20230090.

Nano Research
Cite this article:
Gan Y, Du H, Wang Q, et al. Atomic-level magnetism modulation of nanocrystals for biomedical imaging. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907251
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return