The alkaline anion exchange membrane (AEM) water electrolysis technology has advantages of low cost, high current density, and fast dynamic response, and it has attracted more attention from researchers in the last few years. As one of the core components in this water electrolysis technology, AEMs play a crucial role in improving the hydrogen production efficiency of electrolyzers. However, it is difficult to achieve high ionic conductivity and high alkaline stability of AEMs simultaneously, which limits the practical applications of this hydrogen production technology. This review focuses on alkaline AEMs, which can be applied in the field of water electrolysis. Firstly, the performance evaluation system and the structure–activity relationship of AEMs are proposed. Then, the research progress of AEMs for water electrolysis was illustrated in detail. Finally, the current challenges and outlooks for development of AEMs applied in water electrolysis are presented. We hope this review can provide a new perspective for the design and preparation of AEMs for the demand of practical applications in water electrolysis.
Shih, A. J.; Monteiro, M. C. O.; Dattila, F.; Pavesi, D.; Philips, M.; da Silva, A. H. M.; Vos, R. E.; Ojha, K.; Park, S.; van der Heijden, O. et al. Water electrolysis. Nat. Rev. Methods Primers 2022, 2, 84.
Yang, Y. M.; Shao, Z. G.; Hou, M.; Yi, B. L.; Duan, F. W.; Yu, H. X. Hydrogen production by water electrolysis: Progress and suggestions. Strategic Study CAE 2021, 23, 146–152.
Xu, S. R.; Wu, Q.; Lu, B. A.; Tang, T.; Zhang, J. N.; Hu, J. S. Recent advances and future prospects on industrial catalysts for green hydrogen production in alkaline media. Acta Phys.—Chim. Sin. 2023, 39, 2209001.
Zhang, Y. Q.; Cui, W. Z.; Li, L. J.; Wang, C. B.; Zhan, C.; Quan, X. J. Dual-aligned porous electrodes for enhanced hydrogen evolution in alkaline water electrolysis. Nano Res. 2024, 17, 3835–3843.
Tüysüz, H. Alkaline water electrolysis for green hydrogen production. Acc. Chem. Res. 2024, 57, 558–567.
Chen, F. Y.; Qiu, C.; Wu, Z. Y.; Wi, T. U.; Finfrock, Y. Z.; Wang, H. T. Ruthenium-lead oxide for acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nano Res. 2024, 17, 8671–8677.
Wang, T. Z.; Cao, X. J.; Jiao, L. F. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects. Carbon Neutrality 2022, 1, 21.
Ni, M.; Leung, M. K. H.; Leung, D. Y. C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy 2008, 33, 2337–2354.
Lahrichi, A.; El Issmaeli, Y.; Kalanur, S. S.; Pollet, B. G. Advancements, strategies, and prospects of solid oxide electrolysis cells (SOECs): Towards enhanced performance and large-scale sustainable hydrogen production. J. Energy Chem. 2024, 94, 688–715.
Li, D. G.; Park, E. J.; Zhu, W. L.; Shi, Q. R.; Zhou, Y.; Tian, H. Y.; Lin, Y. H.; Serov, A.; Zulevi, B.; Baca, E. D. et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 2020, 5, 378–385.
Han, Y. J.; Shao, L.; Liu, Y. H.; Li, G. D.; Wang, T. Z.; Zheng, X. R.; Li, J. H.; Han, X. P.; Hu, W. B.; Deng, Y. D. Sulfate-assisted Ni/Fe-based electrodes for anion exchange membrane saline splitting. Nano Res. 2024, 17, 5985–5995.
Shiva Kumar, S.; Ramakrishna, S. U. B.; Krishna, S. V.; Srilatha, K.; Devi, B. R.; Himabindu, V. Synthesis of titanium(IV) oxide composite membrane for hydrogen production through alkaline water electrolysis. S. Afr. J. Chem. Eng. 2018, 25, 54–61.
Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.
Aricò, A. S.; Siracusano, S.; Briguglio, N.; Baglio, V.; Di Blasi, A.; Antonucci, V. Polymer electrolyte membrane water electrolysis: Status of technologies and potential applications in combination with renewable power sources. J. Appl. Electrochem. 2012, 43, 107–118.
Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454.
Hua, K.; Ding, R.; Duan, X.; Rui, Z. Y.; Li, X. K.; Wu, Y. K.; Yang, D. R.; Li, J.; Liu, J. G. Catalytic activity of nanometer-sized Ir–O x catalysts with different coordination numbers for electrocatalytic oxygen evolution. ACS Appl. Nano Mater. 2023, 7, 487–497.
Hua, K.; Li, X. K.; Rui, Z. Y.; Duan, X.; Wu, Y. K.; Yang, D. R.; Li, J.; Liu, J. G. Integrating atomically dispersed Ir sites in MnCo2O4.5 for highly stable acidic oxygen evolution reaction. ACS Catal. 2024, 14, 3712–3724.
Liang, M. D.; Yu, B.; Wen, M. F.; Chen, J.; Xu, J. M.; Zhai, Y. C. Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism. J. Power Sources 2009, 190, 341–345.
Abbasi, R.; Setzler, B. P.; Lin, S. S.; Wang, J. H.; Zhao, Y.; Xu, H.; Pivovar, B.; Tian, B. Y.; Chen, X.; Wu, G. et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 2019, 31, 1805876.
Du, N. Y.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-exchange membrane water electrolyzers. Chem. Rev. 2022, 122, 11830–11895.
Miller, H. A.; Bouzek, K.; Hnat, J.; Loos, S.; Bernäcker, C. I.; Weißgärber, T.; Röntzsch, L.; Meier-Haack, J. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 2020, 4, 2114–2133.
Shirvanian, P.; Loh, A.; Sluijter, S.; Li, X. H. Novel components in anion exchange membrane water electrolyzers (AEMWE’s): Status, challenges and future needs. A mini review. Electrochem. Commun. 2021, 132, 107140.
Wu, Y.; Luo, J. In situ growth of a Pd/Ni(OH)2/NF composite catalyst for the hydrogen evolution reaction. Acta Phys.—Chim. Sin. 2016, 32, 2745–2752.
Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media. Acta Phys.—Chim. Sin. 2021, 37, 2007054.
Wang, H. Q.; Xu, J. H.; Zhang, Q. B.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/p-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.
Chen, N. J.; Lee, Y. M. Anion-conducting polyelectrolytes for energy devices. Trends Chem. 2022, 4, 236–249.
Qiu, N.; Lu, W.; Wang, H. Q. Manipulating local CO2/H2O ratio in electrocatalytic CO2 reduction toward multi-carbon product. Rare Met. 2025, 44, 60–80.
Sun, C. Y.; Li, W.; Wang, H. Q. Cascade electrolysis and thermocatalysis: A reliable system for upgrading C1 to C4 hydrocarbons. Rare Met. 2024, 43, 410–412.
Sun, C. Y.; Li, W.; Wang, K.; Zhou, W. J.; Wang, H. Q. Polyoxometalates-derived nanostructures for electrocatalysis application. Rare Met. 2024, 43, 1845–1866.
Mu, Y. L.; Chu, F. L.; Wang, B. L.; Huang, T. Z.; Ding, Z. Y.; Ma, D. L.; Liu, F.; Liu, H.; Wang, H. Q. Manipulating crystallographic growth orientation by cation-enhanced gel-polymer electrolytes toward reversible low-temperature zinc-ion batteries. InfoMat 2024, 6, e12611.
Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 2014, 7, 3135–3191.
Hagesteijn, K. F. L.; Jiang, S. X.; Ladewig, B. P. A review of the synthesis and characterization of anion exchange membranes. J. Mater. Sci. 2018, 53, 11131–11150.
You, W.; Noonan, K. J. T.; Coates, G. W. Alkaline-stable anion exchange membranes: A review of synthetic approaches. Prog. Polym. Sci. 2020, 100, 101177.
Zakaria, Z.; Kamarudin, S. K. A review of alkaline solid polymer membrane in the application of AEM electrolyzer: Materials and characterization. Int. J. Energy Res. 2021, 45, 18337–18354.
Gottesfeld, S.; Dekel, D. R.; Page, M.; Bae, C.; Yan, Y. S.; Zelenay, P.; Kim, Y. S. Anion exchange membrane fuel cells: Current status and remaining challenges. J. Power Sources 2018, 375, 170–184.
Gu, S.; Cai, R.; Yan, Y. S. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem. Commun. 2011, 47, 2856–2858.
Pan, J.; Li, Y.; Zhuang, L.; Lu, J. T. Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 °C. Chem. Commun. 2010, 46, 8597–8599.
Zhou, J. F.; Unlu, M.; Vega, J. A.; Kohl, P. A. Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells. J. Power Sources 2009, 190, 285–292.
Lee, S. A.; Kim, J.; Kwon, K. C.; Park, S. H.; Jang, H. W. Anion exchange membrane water electrolysis for sustainable large-scale hydrogen production. Carbon Neutralization 2022, 1, 26–48.
Henkensmeier, D.; Najibah, M.; Harms, C.; Žitka, J.; Hnát, J.; Bouzek, K. Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis. J. Electrochem. Energy Convers. Storage 2021, 18, 024001.
Marino, M. G.; Kreuer, K. D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. ChemSusChem 2015, 8, 513–523.
Li, H. H.; Yu, N.; Gellrich, F.; Reumert, A. K.; Kraglund, M. R.; Dong, J. H.; Aili, D.; Yang, J. S. Diamine crosslinked anion exchange membranes based on poly(vinyl benzyl methylpyrrolidinium) for alkaline water electrolysis. J. Membr. Sci. 2021, 633, 119418.
Han, J. J.; Zhu, L.; Pan, J.; Zimudzi, T. J.; Wang, Y.; Peng, Y. Q.; Hickner, M. A.; Zhuang, L. Elastic long-chain multication cross-linked anion exchange membranes. Macromolecules 2017, 50, 3323–3332.
Xiao, L.; Zhang, S.; Pan, J.; Yang, C. X.; He, M. L.; Zhuang, L.; Lu, J. T. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ. Sci. 2012, 5, 7869–7871.
Parrondo, J.; Arges, C. G.; Niedzwiecki, M.; Anderson, E. B.; Ayers, K. E.; Ramani, V. Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis. RSC Adv. 2014, 4, 9875–9879.
An, E. J.; Sim, G. H.; Yu, S. M.; Kim, H. G.; An, S. J.; Lee, C.; Kim, M.; Kim, J. H.; Lee, J. H.; Chi, W. S. Cross-linked polysulfone membranes with controllable cross-linkers for anion-exchange membrane water electrolysis. Eur. Polym. J. 2024, 221, 113543.
Su, X. D.; Gao, L.; Hu, L.; Qaisrani, N. A.; Yan, X. M.; Zhang, W. J.; Jiang, X. B.; Ruan, X. H.; He, G. H. Novel piperidinium functionalized anionic membrane for alkaline polymer electrolysis with excellent electrochemical properties. J. Membr. Sci. 2019, 581, 283–292.
Park, H. J.; Lee, S. Y.; Lee, T. K.; Kim, H. J.; Lee, Y. M. N3-butyl imidazolium-based anion exchange membranes blended with poly(vinyl alcohol) for alkaline water electrolysis. J. Membr. Sci. 2020, 611, 118355.
Park, E. J.; Capuano, C. B.; Ayers, K. E.; Bae, C. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis. J. Power Sources 2018, 375, 367–372.
Cha, M. S.; Park, J. E.; Kim, S.; Han, S. H.; Shin, S. H.; Yang, S. H.; Kim, T. H.; Yu, D. M.; So, S.; Hong, Y. T. et al. Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices. Energy Environ. Sci. 2020, 13, 3633–3645.
Soni, R.; Miyanishi, S.; Kuroki, H.; Yamaguchi, T. Pure water solid alkaline water electrolyzer using fully aromatic and high-molecular-weight poly(fluorene-alt-tetrafluorophenylene)-trimethyl ammonium anion exchange membranes and ionomers. ACS Appl. Energy Mater. 2021, 4, 1053–1058.
Yan, X. M.; Yang, X.; Su, X. D.; Gao, L.; Zhao, J.; Hu, L.; Di, M. T.; Li, T. T.; Ruan, X. H.; He, G. H. Twisted ether-free polymer based alkaline membrane for high-performance water electrolysis. J. Power Sources 2020, 480, 228805.
Song, W. J.; Peng, K.; Xu, W.; Liu, X.; Zhang, H. Q.; Liang, X.; Ye, B. J.; Zhang, H. J.; Yang, Z. J.; Wu, L. et al. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices. Nat. Commun. 2023, 14, 2732.
Chen, N. J.; Paek, S. Y.; Lee, J. Y.; Park, J. H.; Lee, S. Y.; Lee, Y. M. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A·cm−2 and a durability of 1000 hours. Energy Environ. Sci. 2021, 14, 6338–6348.
Deng, G. X.; Liao, Y. W.; Lin, Y. K.; Ding, L.; Wang, H. H. Engineering robust triazine crosslinked and pyridine capped anion exchange membrane for advanced water electrolysis. Angew. Chem., Int. Ed. 2024, 63, e202412632.
Zeng, M. Y.; He, X. Y.; Wen, J.; Zhang, G. B.; Zhang, H. B.; Feng, H. H.; Qian, Y.; Li, M. N-methylquinuclidinium-based anion exchange membrane with ultrahigh alkaline stability. Adv. Mater. 2023, 35, 2306675.
Yin, L. Q.; Ren, R.; He, L. L.; Zheng, W. T.; Guo, Y.; Wang, L. Q.; Lee, H.; Du, J.; Li, Z. H.; Tang, T. et al. Stable anion exchange membrane bearing quinuclidinium for high-performance water electrolysis. Angew. Chem., Int. Ed. 2024, 63, e202400764.
Hu, X.; Huang, Y. D.; Liu, L.; Ju, Q.; Zhou, X. X.; Qiao, X. Q.; Zheng, Z. F.; Li, N. W. Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability. J. Membr. Sci. 2021, 621, 118964.