The reactions of K5Pn4 (Pn = Sb and Bi) and CpRh(PPh3)2 (Cp = C5H5, cyclopentadiene) in ethylenediamine (en) solutions resulted in a series of new Pn73− adducts, {Pn8[Rh(PPh3)]2}2−, {Sb7[Rh(PPh3)]2}2−, and {Sb7[Rh(PPh3)]3}2−, through slight variations in reaction conditions. These clusters represent rare electron-deficient group 15 polyhedral clusters comprising Pn73− with RhPPh3 units in an η5 coordination mode. Notably, the anionic clusters {Sb8[Rh(PPh3)]2}2−, {Sb7[Rh(PPh3)]2}2−, and {Sb7[Rh(PPh3)]3}2− are the first Rh-Sb binary Zintl clusters to date. The synthesis, structure, and bonding of these new deltahedral hybrids were studied for the first time, revealing a highly versatile chemistry associated with classical Pn73− cages and offering a pathway to prepare polyhedral hybrid clusters based on Pn73− cages.
Wang, Y.; McGrady, J. E.; Sun, Z. M. Solution-based group 14 Zintl anions: New frontiers and discoveries. Acc. Chem. Res. 2021, 54, 1506–1516.
Mayer, K.; Weßing, J.; Fässler, T. F.; Fischer, R. A. Intermetalloid clusters: Molecules and solids in a dialogue. Angew. Chem., Int. Ed. 2018, 57, 14372–14393.
Pan, F. X.; Peerless, B.; Dehnen, S. Bismuth-based metal clusters-from molecular aesthetics to contemporary materials science. Acc. Chem. Res. 2023, 56, 1018–1030.
Wilson, R. J.; Lichtenberger, N.; Weinert, B.; Dehnen, S. Intermetalloid and heterometallic clusters combining p-block (semi)metals with d- or f-block metals. Chem. Rev. 2019, 119, 8506–8554.
Turbervill, R. S. P.; Goicoechea, J. M. From clusters to unorthodox pnictogen sources: Solution-phase reactivity of [E7]3− (E = P–Sb) anions. Chem. Rev. 2014, 114, 10807–10828.
van Ijzendoorn, B.; Mehta, M. Frontiers in the solution-phase chemistry of homoatomic group 15 Zintl clusters. Dalton Trans. 2020, 49, 14758–14765.
Ahlrichs, R.; Fenske, D.; Fromm, K.; Krautscheid, H.; Krautscheid, U.; Treutler, O. Zintl anions as starting compounds for the synthesis of polynuclear transition metal complexes. Chem.—Eur. J. 1996, 2, 238–244.
Knapp, C.; Zhou, B. B.; Denning, M. S.; Rees, N. H.; Goicoechea, J. M. Reactivity studies of group 15 Zintl ions towards homoleptic post-transition metal organometallics: A ‘bottom-up’ approach to bimetallic molecular clusters. Dalton Trans. 2010, 39, 426–436.
Qian, M. C.; Reber, A. C.; Ugrinov, A.; Chaki, N. K.; Mandal, S.; Saavedra, H. M.; Khanna, S. N.; Sen, A.; Weiss, P. S. Cluster-assembled materials: Toward nanomaterials with precise control over properties. ACS Nano 2010, 4, 235–240.
Mandal, S.; Reber, A. C.; Qian, M. C.; Liu, R.; Saavedra, H. M.; Sen, S.; Weiss, P. S.; Khanna, S. N.; Sen, A. Synthesis, structure and band gap energy of covalently linked cluster-assembled materials. Dalton Trans. 2012, 41, 12365–12377.
Mandal, S.; Reber, A. C.; Qian, M. C.; Liu, R.; Saavedra, H. M.; Sen, S.; Weiss, P. S.; Khanna, S. N.; Sen, A. On the stability of an unsupported mercury-mercury bond linking group 15 Zintl clusters. Dalton Trans. 2012, 41, 5454–5457.
Knapp, C. M.; Large, J. S.; Rees, N. H.; Goicoechea, J. M. A versatile salt-metathesis route to heteroatomic clusters derived from phosphorus and arsenic Zintl anions. Dalton Trans. 2011, 40, 735–745.
Eichhorn, B. W.; Haushalter, R. C.; Huffman, J. C. Insertion of Cr(CO)3 into
Charles, S.; Eichhorn, B. W.; Rheingold, A. L.; Bott, S. G. Synthesis, structure, and properties of the [E7M(CO)3]3− complexes where E = P, As, Sb and M = Cr, Mo, W. J. Am. Chem. Soc. 1994, 116, 8077–8086.
Bolle, U.; Tremel, W. Insertion of a transition metal fragment into a heptaantimonide(3−) anion: Synthesis and structure of [Sb7Mo(CO)3]3−. J. Chem. Soc., Chem. Commun. 1994, 217–219.
Li, Z.; Ouyang, D.; Xu, L. [Bi7M3(CO)3]2− (M = Co, Rh): A new architype of 10-vertex deltahedral hybrids by the unprecedented polycyclic η5-coordination addition of Bi73− and trimetallic fragments. Chem. Commun. 2019, 55, 6783–6786.
Gascoin, F.; Sevov, S. C. Synthesis and characterization of the “metallic salts” A5Pn4 (A = K, Rb, Cs and Pn = As, Sb, Bi) with isolated zigzag tetramers of Pn44− and an extra delocalized electron. Inorg. Chem. 2001, 40, 5177–5181.
Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J. Chem. Soc. A 1966, 1711–1732.
Wakatsuki, Y.; Yamazaki, H. Some reactions of π-cyclopentadienylbis(triphenylphosphine) rhodium(I). J. Organomet. Chem. 1974, 64, 393–402.
Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3–8.
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.
Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2009, 65, 148–155.
Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.
Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
Perla, L. G.; Oliver, A. G.; Sevov, S. C. Bi73−: The missing family member, finally isolated and characterized. Inorg. Chem. 2015, 54, 872–875.
Xu, L.; Ugrinov, A.; Sevov, S. C. Stabilization of ozone-like [Bi3]3− in the heteroatomic closo-clusters [Bi3Cr2(CO)6]3− and [Bi3Mo2(CO)6]3−. J. Am. Chem. Soc. 2001, 123, 4091–4092.
Goicoechea, J. M.; Hull, M. W.; Sevov, S. C. Heteroatomic deltahedral clusters: Synthesis and structures of closo-[Bi3Ni4(CO)6]3−, closo-[Bi4Ni4(CO)6]2−, the open cluster [Bi3Ni6(CO)9]3−, and the Intermetalloid closo-[Ni x @{Bi6Ni6(CO)8}]4−. J. Am. Chem. Soc. 2007, 129, 7885–7893.
Qiao, L.; Yang, T.; Frenking, G.; Sun, Z. M. [Ga@Bi10(NbMes)2]3−: A linear Nb–GaI–Nb filament coordinated by a bismuth cage. Chem. Commun. 2023, 59, 4024–4027.
Qiao, L.; Chen, D. D.; Zhu, J.; Muñoz-Castroc, A.; Sun, Z. M. [Bi6Mo3(CO)9]4−: A multiple local σ-aromatic cluster containing a distorted Bi6 triangular prism. Chem. Commun. 2021, 57, 3656–3659.
Lichtenberger, N.; Spang, N.; Eichhöfer, A.; Dehnen, S. Between localization and delocalization: Ru(cod)2+ units in the Zintl clusters [Bi9{Ru(cod)}2]3− and [Tl2Bi6{Ru(cod)}]2−. Angew. Chem., Int. Ed. 2017, 56, 13253–13258.
Femoni, C.; Bussoli, G.; Ciabatti, I.; Ermini, M.; Hayatifar, M.; Iapalucci, M. C.; Ruggieri, S.; Zacchini, S. Interstitial bismuth atoms in icosahedral rhodium cages: Syntheses, characterizations, and molecular structures of the [Bi@Rh12(CO)27]3−, [(Bi@Rh12(CO)26)2Bi]5−, [Bi@Rh14(CO)27Bi2]3−, and [Bi@Rh17(CO)33Bi2]4− carbonyl clusters. Inorg. Chem. 2017, 56, 6343–6351.
Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199–3204.
Charles, S.; Eichhorn, B. W.; Bott, S. G. Synthesis and structure of [Sb7Ni3(CO)3]3−: A new structural type for nido 10-vertex polyhedral clusters. J. Am. Chem. Soc. 1993, 115, 5837–5838.
Critchlow, S. C.; Corbett, J. D. Homopolyatomic anions of the post transition elements. Synthesis and structure of potassium-crypt salts of the tetraantimonide(2−) and heptaantimonide(3−) anions, Sb42− and Sb73−. Inorg. Chem. 1984, 23, 770–774.
Adolphson, D. G.; Corbett, J. D.; Merryman, D. J. Stable homopolyatomic anions of the post-transition metals. “Zintl ions”. The synthesis and structure of a salt containing the heptantimonide(3−) anion. J. Am. Chem. Soc. 1976, 98, 7234–7239.
Femoni, C.; Funaioli, T.; Iapalucci, C. M.; Ruggieri, S.; Zacchini, S. Rh–Sb nanoclusters: Synthesis, structure, and electrochemical studies of the atomically precise [Rh20Sb3(CO)36]3− and [Rh21Sb2(CO)38]5− carbonyl compounds. Inorg. Chem. 2020, 59, 4300–4310.
Bolle, U.; Tremel. W. [Na(2,2,2,-crypt)]3[Sb11], a salt containing the undecaantimonide(3−) anion. J. Chem. Soc., Chem. Commun. 1992, 91–93.
Zhai, J.; Xu, L. Synthesis and crystal structure of [K(2,2,2-crypt)]3Sb11. Chin. J. Struct. Chem. 2011, 30, 1091–1094.
Mingos, D. M. P. A general theory for cluster and ring compounds of the main group and transition elements. Nat. Phys. Sci. 1972, 236, 99–102.
Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 1971, 792–793.
Mingos, D. M. P. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 1984, 17, 311–319.
Zhang, W. Q.; Tkachenko, N. V.; Qiao, L.; Boldyrev, A. I.; Sun, Z. M. Synthesis and structure of binary copper/silver-arsenic clusters derived from Zintl ion As73−. Chin. J. Chem. 2022, 40, 65–70.
Chen, W. X.; Tkachenko, N. V.; Muñoz-Castro, A.; Boldyrev, A. I.; Sun, Z. M. Ruthenium-mediated assembly and enhanced stability of heterometallic polystannides [Ru2Sn19]4− and [Ru2Sn20]6−. Nano Res. 2022, 15, 5705–5711.
Popov, I. A.; Pan, F. X.; You, X. R.; Li, L. J.; Matito, E.; Liu, C.; Zhai, H. J.; Sun, Z. M.; Boldyrev, A. I. Peculiar all-metal σ-aromaticity of the [Au2Sb16]4− anion in the solid state. Angew. Chem., Int. Ed. 2016, 55, 15344–15346.
Qiao, L.; Zhang, C.; Shu, C. C.; Morgan, H. W. T.; McGrady, J. E.; Sun, Z. M. [Cu4@E18]4− (E = Sn, Pb): Fused derivatives of endohedral stannaspherene and plumbaspherene. J. Am. Chem. Soc. 2020, 142, 13288–13293.
Liu, C.; Tkachenko, N. V.; Popov, I. A.; Fedik, N.; Min, X.; Xu, C. Q.; Li, J.; McGrady, J. E.; Boldyrev, A. I.; Sun, Z. M. Structure and bonding in [Sb@In8Sb12]3− and [Sb@In8Sb12]5−. Angew. Chem., Int. Ed. 2019, 58, 8367–8371.