PDF (13.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

An optical carbon nanotube fibre probe for measurement of nano structures with large aspect ratio

Weihao Tao1Shuhao Zhao1Hanjin Dong1Ze Zhang1Peirui Ji1Shenghan Qin1Wenbo Hu1Jinlong Zhu2Renjie Zhou3Shuming Yang1()
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
Show Author Information

Graphical Abstract

View original image Download original image
This carbon nanotube fibre probe has a metallic single-walled carbon nanotubes (SWCNT) bundle at the tip, which can propagate the surface plasmon polaritons (SPPs) to the tip of the metallic SWCNT bundle and form a focusing light field while testing the structure with large aspect ratio. It boasts superior near-field optical imaging capabilities for structures exhibiting a considerable aspect ratio compared with the conventional fibre probe.

Abstract

With the development of imaging and measurement technologies, scanning near-field optical microscopy (SNOM) has achieved high signal-to-noise ratio. The resolution of a fibre probe-based SNOM system is capable of reaching 10 nm. However, SNOM applications are presently constrained to the measurement of near-field optical information to relatively straightforward structures, including quantum dots, carbon nanotubes, graphene, and so forth. The geometry of conventional fibre probes, with tips at an angle of 30°–60°, presents a challenge for accurately imaging complex surface structures. This paper proposes a carbon nanotube composite fibre probe (CNT-FP) with a large aspect ratio. The key point is that a carbon nanotube bundle is composited at the tip of conventional surface plasmon polaritons fibre probes (SPPs-FP), which are the fibre probes coated with gold film to excite the SPPs. The coupling, propagation, and focusing effects of SPPs on the carbon nanotube bundle are verified. CNT-FPs have been fabricated and applied to measure a grating with the depth of 400 nm and the width of 400 nm. The experimental results show that the measurement accuracy and imaging quality of CNT-FP are nearly one order of magnitude higher than that of conventional SPPs-FP, as evidenced by evaluation criteria such as line roughness and volatility index. Moreover, it achieves an optical resolution of 72.1 nm in the measurements of a nano structure with large aspect ratio. It provides an effective solution of measuring structures with larger aspect ratios.

Electronic Supplementary Material

Download File(s)
7254_ESM.pdf (461.8 KB)

References

[1]

Krug, J. T.; Sánchez, E. J.; Xie, X. S. Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. J. Chem. Phys. 2002, 116, 10895–10901.

[2]

Giugni, A.; Torre, B.; Toma, A.; Francardi, M.; Malerba, M.; Alabastri, A.; Zaccaria, R. P.; Stockman, M. I.; Di Fabrizio, E. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 2013, 8, 845–852.

[3]

Tugchin, B. N.; Janunts, N.; Klein, A. E.; Steinert, M.; Fasold, S.; Diziain, S.; Sison, M.; Kley, E. B.; Tünnermann, A.; Pertsch, T. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2015, 2, 1468–1475.

[4]

Wang, F.; Li, S. B.; Zhao, S. H.; Zhang, Z.; Ji, P. R.; Xia, C. S.; Cheng, B. Y.; Zhang, G. F.; Yang, S. M. A flat-based plasmonic fiber probe for nanoimaging. Nano Res. 2023, 16, 7545–7549.

[5]

Minn, K.; Birmingham, B.; Ko, B.; Ko, B.; Lee, H. W. H.; Lee, H. W. H.; Lee, H. W. H.; Lee, H. W. H.; Lee, H. W. H.; Zhang, Z. R. et al. Interfacing photonic crystal fiber with a metallic nanoantenna for enhanced light nanofocusing. Photonics Res. 2021, 9, 252–258.

[6]

Choi, S. S.; Park, M. J.; Han, C. H.; Oh, S. J.; Han, S. H.; Park, N. K.; Kim, Y. S.; Choo, H. Fabrication of pyramidal probes with various periodic patterns and a single nanopore. J. Vac. Sci. Technol. B 2015, 33, 06F203.

[7]

Hou, Y. P.; Ma, C. F.; Wang, W. T.; Chen, Y. H. A dual-use probe for nano-metric photoelectric characterization using a confined light field generated by photonic crystals in the cantilever. Nano Res. 2021, 14, 3848–3853.

[8]

Ropers, C.; Neacsu, C. C.; Elsaesser, T.; Albrecht, M.; Raschke, M. B.; Lienau, C. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. 2007, 7, 2784–2788.

[9]

Zhang, Z.; Ahn, P.; Dong, B. Q.; Balogun, O.; Sun, C. Quantitative imaging of rapidly decaying evanescent fields using plasmonic near-field scanning optical microscopy. Sci. Rep. 2013, 3, 2803.

[10]

Tuniz, A.; Chemnitz, M.; Dellith, J.; Weidlich, S.; Schmidt, M. A. Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber. Nano Lett. 2017, 17, 631–637.

[11]

Kim, S.; Yu, N.; Ma, X. Z.; Zhu, Y. Z.; Liu, Q. S.; Liu, M.; Yan, R. X. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 2019, 13, 636–643.

[12]

Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.

[13]

Xu, D.; Xiong, X.; Wu, L.; Ren, X. F.; Png, C. E.; Guo, G. C.; Gong, Q. H.; Xiao, Y. F. Quantum plasmonics: New opportunity in fundamental and applied photonics. Adv. Opt. Photonics 2018, 10, 703–756.

[14]

Németh, G.; Datz, D.; Tóháti, H. M.; Pekker, Á.; Kamarás, K. Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared. Phys. Status Solidi B 2016, 253, 2413–2416.

[15]

Zhang, W. H.; Fu, Y. Y.; Li, H. J.; Gu, Z. N.; Zhang, Z. H.; Zhu, X. Discrete polarization absorption property of carbon nanotubes studied by using scanning near-field optical microscope. Scanning 2004, 26, I21–I25.

[16]
Beitner, D.; Amitay, S.; Atrt, S. S.; Richter, S.; Suchowski, H.; Ben Shalom, M. S-SNOM imaging of stacking order in few-layer graphene. In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Munich, Germany, 2023; IEEE, p 1.
[17]

Wirth, K. G.; Linnenbank, H.; Steinle, T.; Banszerus, L.; Icking, E.; Stampfer, C.; Giessen, H.; Taubner, T. Tunable s-SNOM for nanoscale infrared optical measurement of electronic properties of bilayer graphene. ACS Photonics 2021, 8, 418–423.

[18]

Gadelha, A. C.; Ohlberg, D. A. A.; Rabelo, C.; Neto, E. G. S.; Vasconcelos, T. L.; Campos, J. L.; Lemos, J. S.; Ornelas, V.; Miranda, D.; Nadas, R. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 2021, 590, 405–409.

[19]

Kim, P.; Adorno-Martinez, W. E.; Khan, M.; Aizenberg, J. Enriching libraries of high-aspect-ratio micro- or nanostructures by rapid, low-cost, benchtop nanofabrication. Nat. Protoc. 2012, 7, 311–327.

[20]

Chang, H. K.; Kim, Y. K. UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole. Sens. Actuators A: Phys. 2000, 84, 342–350.

[21]

Paek, J.; Kim, J. Microsphere-assisted fabrication of high aspect-ratio elastomeric micropillars and waveguides. Nat. Commun. 2014, 5, 3324.

[22]

Slattery, A. D.; Shearer, C. J.; Gibson, C. T.; Shapter, J. G.; Lewis, D. A.; Stapleton, A. J. Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy. Nanotechnology 2016, 27, 475708.

[23]

Chin, S. C.; Chang, Y. C.; Chang, C. S. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy. Nanotechnology 2009, 20, 285307.

[24]

Cheng, B. Y.; Yang, S. M.; Li, W.; Li, S.; Shafique, S.; Wu, D.; Ji, S. Y.; Sun, Y.; Jiang, Z. D. Controlled growth of a single carbon nanotube on an AFM probe. Microsyst. Nanoeng. 2021, 7, 80.

[25]

Guo, X.; Qiu, M.; Bao, J. M.; Wiley, B. J.; Yang, Q.; Zhang, X. N.; Ma, Y. G.; Yu, H. K.; Tong, L. M. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 2009, 9, 4515–4519.

[26]

Ma, X. Z.; Zhu, Y. Z.; Yu, N.; Kim, S.; Liu, Q. S.; Apontti, L.; Xu, D.; Yan, R. X.; Liu, M. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: Nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett. 2019, 19, 100–107.

[27]

Fujita, Y.; Walke, P.; De Feyter, S.; Uji-I, H. Remote excitation-tip-enhanced Raman scattering microscopy using silver nanowire. Jpn. J. Appl. Phys. 2016, 55, 08NB03.

[28]

Dai, H. J.; Javey, A.; Pop, E.; Mann, D.; Kim, W.; Lu, Y. R. Electrical transport properties and field effect transistors of carbon nanotubes. Nano 2006, 1, 1–13.

[29]

Poncharal, P.; Berger, C.; Yi, Y.; Wang, Z. L.; de Heer, W. A. Room temperature ballistic conduction in carbon nanotubes. J. Phys. Chem. B 2002, 106, 12104–12118.

[30]

Lu, W.; Xiong, Y.; Chen, L. W. Length-dependent dielectric polarization in metallic single-walled carbon nanotubes. J. Phys. Chem. C 2009, 113, 10337–10340.

[31]

Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng.: B 2021, 268, 115095.

[32]

Suri, A.; Coleman, K. S. The superiority of air oxidation over liquid-phase oxidative treatment in the purification of carbon nanotubes. Carbon 2011, 49, 3031–3038.

[33]

Lu, F. F.; Zhang, W. D.; Zhang, L.; Liu, M.; Xue, T. Y.; Huang, L. G.; Gao, F.; Mei, T. Nanofocusing of surface plasmon polaritons on metal-coated fiber tip under internal excitation of radial vector beam. Plasmonics 2019, 14, 1593–1599.

[34]

Li, S. B.; Yang, S. M.; Wang, F.; Liu, Q.; Cheng, B. Y.; Rosenwaks, Y. Plasmonic interference modulation for broadband nanofocusing. Nanophotonics 2021, 10, 4113–4123.

[35]

Abdulhameed, A.; Halim, M. M.; Halin, I. A. Dielectrophoretic alignment of carbon nanotubes: Theory, applications, and future. Nanotechnology 2023, 34, 242001.

[36]

Stokes, P.; Khondaker, S. I. High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Appl. Phys. Lett. 2010, 96, 083110.

Nano Research
Article number: 94907254
Cite this article:
Tao W, Zhao S, Dong H, et al. An optical carbon nanotube fibre probe for measurement of nano structures with large aspect ratio. Nano Research, 2025, 18(3): 94907254. https://doi.org/10.26599/NR.2025.94907254
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return