With the development of imaging and measurement technologies, scanning near-field optical microscopy (SNOM) has achieved high signal-to-noise ratio. The resolution of a fibre probe-based SNOM system is capable of reaching 10 nm. However, SNOM applications are presently constrained to the measurement of near-field optical information to relatively straightforward structures, including quantum dots, carbon nanotubes, graphene, and so forth. The geometry of conventional fibre probes, with tips at an angle of 30°–60°, presents a challenge for accurately imaging complex surface structures. This paper proposes a carbon nanotube composite fibre probe (CNT-FP) with a large aspect ratio. The key point is that a carbon nanotube bundle is composited at the tip of conventional surface plasmon polaritons fibre probes (SPPs-FP), which are the fibre probes coated with gold film to excite the SPPs. The coupling, propagation, and focusing effects of SPPs on the carbon nanotube bundle are verified. CNT-FPs have been fabricated and applied to measure a grating with the depth of 400 nm and the width of 400 nm. The experimental results show that the measurement accuracy and imaging quality of CNT-FP are nearly one order of magnitude higher than that of conventional SPPs-FP, as evidenced by evaluation criteria such as line roughness and volatility index. Moreover, it achieves an optical resolution of 72.1 nm in the measurements of a nano structure with large aspect ratio. It provides an effective solution of measuring structures with larger aspect ratios.
Krug, J. T.; Sánchez, E. J.; Xie, X. S. Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. J. Chem. Phys. 2002, 116, 10895–10901.
Giugni, A.; Torre, B.; Toma, A.; Francardi, M.; Malerba, M.; Alabastri, A.; Zaccaria, R. P.; Stockman, M. I.; Di Fabrizio, E. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 2013, 8, 845–852.
Tugchin, B. N.; Janunts, N.; Klein, A. E.; Steinert, M.; Fasold, S.; Diziain, S.; Sison, M.; Kley, E. B.; Tünnermann, A.; Pertsch, T. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2015, 2, 1468–1475.
Wang, F.; Li, S. B.; Zhao, S. H.; Zhang, Z.; Ji, P. R.; Xia, C. S.; Cheng, B. Y.; Zhang, G. F.; Yang, S. M. A flat-based plasmonic fiber probe for nanoimaging. Nano Res. 2023, 16, 7545–7549.
Minn, K.; Birmingham, B.; Ko, B.; Ko, B.; Lee, H. W. H.; Lee, H. W. H.; Lee, H. W. H.; Lee, H. W. H.; Lee, H. W. H.; Zhang, Z. R. et al. Interfacing photonic crystal fiber with a metallic nanoantenna for enhanced light nanofocusing. Photonics Res. 2021, 9, 252–258.
Choi, S. S.; Park, M. J.; Han, C. H.; Oh, S. J.; Han, S. H.; Park, N. K.; Kim, Y. S.; Choo, H. Fabrication of pyramidal probes with various periodic patterns and a single nanopore. J. Vac. Sci. Technol. B 2015, 33, 06F203.
Hou, Y. P.; Ma, C. F.; Wang, W. T.; Chen, Y. H. A dual-use probe for nano-metric photoelectric characterization using a confined light field generated by photonic crystals in the cantilever. Nano Res. 2021, 14, 3848–3853.
Ropers, C.; Neacsu, C. C.; Elsaesser, T.; Albrecht, M.; Raschke, M. B.; Lienau, C. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. 2007, 7, 2784–2788.
Zhang, Z.; Ahn, P.; Dong, B. Q.; Balogun, O.; Sun, C. Quantitative imaging of rapidly decaying evanescent fields using plasmonic near-field scanning optical microscopy. Sci. Rep. 2013, 3, 2803.
Tuniz, A.; Chemnitz, M.; Dellith, J.; Weidlich, S.; Schmidt, M. A. Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber. Nano Lett. 2017, 17, 631–637.
Kim, S.; Yu, N.; Ma, X. Z.; Zhu, Y. Z.; Liu, Q. S.; Liu, M.; Yan, R. X. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 2019, 13, 636–643.
Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.
Xu, D.; Xiong, X.; Wu, L.; Ren, X. F.; Png, C. E.; Guo, G. C.; Gong, Q. H.; Xiao, Y. F. Quantum plasmonics: New opportunity in fundamental and applied photonics. Adv. Opt. Photonics 2018, 10, 703–756.
Németh, G.; Datz, D.; Tóháti, H. M.; Pekker, Á.; Kamarás, K. Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared. Phys. Status Solidi B 2016, 253, 2413–2416.
Zhang, W. H.; Fu, Y. Y.; Li, H. J.; Gu, Z. N.; Zhang, Z. H.; Zhu, X. Discrete polarization absorption property of carbon nanotubes studied by using scanning near-field optical microscope. Scanning 2004, 26, I21–I25.
Wirth, K. G.; Linnenbank, H.; Steinle, T.; Banszerus, L.; Icking, E.; Stampfer, C.; Giessen, H.; Taubner, T. Tunable s-SNOM for nanoscale infrared optical measurement of electronic properties of bilayer graphene. ACS Photonics 2021, 8, 418–423.
Gadelha, A. C.; Ohlberg, D. A. A.; Rabelo, C.; Neto, E. G. S.; Vasconcelos, T. L.; Campos, J. L.; Lemos, J. S.; Ornelas, V.; Miranda, D.; Nadas, R. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 2021, 590, 405–409.
Kim, P.; Adorno-Martinez, W. E.; Khan, M.; Aizenberg, J. Enriching libraries of high-aspect-ratio micro- or nanostructures by rapid, low-cost, benchtop nanofabrication. Nat. Protoc. 2012, 7, 311–327.
Chang, H. K.; Kim, Y. K. UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole. Sens. Actuators A: Phys. 2000, 84, 342–350.
Paek, J.; Kim, J. Microsphere-assisted fabrication of high aspect-ratio elastomeric micropillars and waveguides. Nat. Commun. 2014, 5, 3324.
Slattery, A. D.; Shearer, C. J.; Gibson, C. T.; Shapter, J. G.; Lewis, D. A.; Stapleton, A. J. Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy. Nanotechnology 2016, 27, 475708.
Chin, S. C.; Chang, Y. C.; Chang, C. S. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy. Nanotechnology 2009, 20, 285307.
Cheng, B. Y.; Yang, S. M.; Li, W.; Li, S.; Shafique, S.; Wu, D.; Ji, S. Y.; Sun, Y.; Jiang, Z. D. Controlled growth of a single carbon nanotube on an AFM probe. Microsyst. Nanoeng. 2021, 7, 80.
Guo, X.; Qiu, M.; Bao, J. M.; Wiley, B. J.; Yang, Q.; Zhang, X. N.; Ma, Y. G.; Yu, H. K.; Tong, L. M. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 2009, 9, 4515–4519.
Ma, X. Z.; Zhu, Y. Z.; Yu, N.; Kim, S.; Liu, Q. S.; Apontti, L.; Xu, D.; Yan, R. X.; Liu, M. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: Nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett. 2019, 19, 100–107.
Fujita, Y.; Walke, P.; De Feyter, S.; Uji-I, H. Remote excitation-tip-enhanced Raman scattering microscopy using silver nanowire. Jpn. J. Appl. Phys. 2016, 55, 08NB03.
Dai, H. J.; Javey, A.; Pop, E.; Mann, D.; Kim, W.; Lu, Y. R. Electrical transport properties and field effect transistors of carbon nanotubes. Nano 2006, 1, 1–13.
Poncharal, P.; Berger, C.; Yi, Y.; Wang, Z. L.; de Heer, W. A. Room temperature ballistic conduction in carbon nanotubes. J. Phys. Chem. B 2002, 106, 12104–12118.
Lu, W.; Xiong, Y.; Chen, L. W. Length-dependent dielectric polarization in metallic single-walled carbon nanotubes. J. Phys. Chem. C 2009, 113, 10337–10340.
Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng.: B 2021, 268, 115095.
Suri, A.; Coleman, K. S. The superiority of air oxidation over liquid-phase oxidative treatment in the purification of carbon nanotubes. Carbon 2011, 49, 3031–3038.
Lu, F. F.; Zhang, W. D.; Zhang, L.; Liu, M.; Xue, T. Y.; Huang, L. G.; Gao, F.; Mei, T. Nanofocusing of surface plasmon polaritons on metal-coated fiber tip under internal excitation of radial vector beam. Plasmonics 2019, 14, 1593–1599.
Li, S. B.; Yang, S. M.; Wang, F.; Liu, Q.; Cheng, B. Y.; Rosenwaks, Y. Plasmonic interference modulation for broadband nanofocusing. Nanophotonics 2021, 10, 4113–4123.
Abdulhameed, A.; Halim, M. M.; Halin, I. A. Dielectrophoretic alignment of carbon nanotubes: Theory, applications, and future. Nanotechnology 2023, 34, 242001.
Stokes, P.; Khondaker, S. I. High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Appl. Phys. Lett. 2010, 96, 083110.