NO oxidation with H2O2 as the oxidant is a promising green denitration technology. However, the current metal oxide catalysts still have many disadvantages for this reaction, such as insufficient catalytic activity for H2O2 activation, poor selectivity, and low stability. In this study, we employ atomically dispersed Co anchored on SBA-15 with Co-O4 structure for NO oxidation, which achieves a 90% removal efficiency of NO under low molar ratio of H2O2 to NO (1.56), ultra-low temperature (80 °C), and ultra-high space velocity (720,000 h–1), representing the top-level performance among previously reported catalysts. More interestingly, our work reveals that by taking advantage of the uniform Co-O4 structure, H2O2 is mainly directionally converted into ·O2– at the Co-O4 site, and ·O2– plays a key role for achieving the deep-oxidation of NO to produce NO3–, which is contrast to the previously reports that 1O2 is the main free radical for NO oxidation. This study highlights the great potentials of single-atom catalysts for improving the H2O2 utilization performance for NO oxidation.
Zhu, S. J.; Lyu, Q. G.; Zhu, J. G.; Wu, H. X.; Wu, G. L. Effect of air distribution on NO x emissions of pulverized coal and char combustion preheated by a circulating fluidized bed. Energy Fuels 2018, 32, 7909–7915.
Adewuyi, Y. G.; Sakyi, N. Y. Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature. Ind. Eng. Chem. Res. 2013, 52, 11702–11711.
Hailili, R.; Ji, H. W.; Wang, K. W.; Dong, X. A.; Chen, C. C.; Sheng, H.; Bahnemann, D. W.; Zhao, J. C. ZnO with controllable oxygen vacancies for photocatalytic nitrogen oxide removal. ACS Catal. 2022, 12, 10004–10017.
Wang, B.; Song, Z. J.; Sun, L. S. A review: Comparison of multi-air-pollutant removal by advanced oxidation processes-industrial implementation for catalytic oxidation processes. Chem. Eng. J. 2021, 409, 128136.
Dai, Z. J.; Wang, L. L.; Tang, H.; Sun, Z. J.; Liu, W.; Sun, Y.; Su, S.; Hu, S.; Wang, Y.; Xu, K. et al. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst. Chemosphere 2018, 207, 440–448.
Tong, T.; Chen, J. J.; Xiong, S. C.; Yang, W. H.; Yang, Q. L.; Yang, L. J.; Peng, Y.; Liu, Z. M.; Li, J. H. Vanadium-density-dependent thermal decomposition of NH4HSO4 on V2O5/TiO2 SCR catalysts. Catal. Sci. Technol. 2019, 9, 3779–3787.
Mondal, M. K.; Chelluboyana, V. R. New experimental results of combined SO2 and NO removal from simulated gas stream by NaClO as low-cost absorbent. Chem. Eng. J. 2013, 217, 48–53.
Park, H. W.; Choi, S.; Park, D. W. Simultaneous treatment of NO and SO2 with aqueous NaClO2 solution in a wet scrubber combined with a plasma electrostatic precipitator. J. Hazard. Mater. 2015, 285, 117–126.
Han, C. Y.; Zhang, S. L.; Guo, L. N.; Zeng, Y. Q.; Li, X. H.; Shi, Z. C.; Zhang, Y.; Zhang, B. Q.; Zhong, Q. Ehanced catalytic ozonation of NO over black-TiO2 catalyst under inadequate ozone (O3/NO molar ratio = 0.6). Chem. Eng. Res. Des. 2018, 136, 219–229.
Song, Z. J.; Wang, B.; Yang, W.; Chen, T.; Ma, C.; Sun, L. S. Simultaneous removal of NO and SO2 through heterogeneous catalytic oxidation-absorption process using magnetic Fe2.5M0.5O4 (M = Fe, Mn, Ti and Cu) catalysts with vaporized H2O2. Chem. Eng. J. 2020, 386, 123883.
Hao, R. L.; Zhao, Y.; Yuan, B.; Zhou, S. H.; Yang, S. Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO. J. Hazard. Mater. 2016, 318, 224–232.
Liu, Y. X.; Liu, Z. Y.; Wang, Y.; Yin, Y. S.; Pan, J. F.; Zhang, J.; Wang, Q. Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system. J. Hazard. Mater. 2018, 342, 326–334.
Liu, X.; Wang, C. A.; Zhu, T.; Lv, Q.; Li, Y.; Che, D. F. Simultaneous removal of NO x and SO2 from coal-fired flue gas based on the catalytic decomposition of H2O2 over Fe2(MoO4)3. Chem. Eng. J. 2019, 371, 486–499.
Jia, S. H.; Pu, G.; Gao, J.; Yuan, C. Oxidation-absorption process for simultaneous removal of NO x and SO2 over Fe/Al2O3@SiO2 using vaporized H2O2. Chemosphere 2022, 291, 133047.
Hong, P. D.; Wu, Z. J.; Yang, D. D.; Zhang, K. S.; He, J. Y.; Li, Y. L.; Xie, C.; Yang, W.; Yang, Y.; Kong, L. T. et al. Efficient generation of singlet oxygen (1O2) by hollow amorphous Co/C composites for selective degradation of oxytetracycline via Fenton-like process. Chem. Eng. J. 2021, 421, 129594.
Batchelor, S. N.; Carr, D.; Coleman, C. E.; Fairclough, L.; Jarvis, A. The photofading mechanism of commercial reactive dyes on cotton. Dyes Pigm. 2003, 59, 269–275.
Qian, Z.; Luo, M. C.; Feng, X. H.; Yang, X. J.; Guo, Y. X.; Yang, L. J.; Yuan, B.; Zhao, Y.; Hao, R. L. Unexpected role of singlet oxygen generated in urea-modulated LaFeO3 perovskite heterogeneous Fenton system in denitrification: Mechanism and theoretical calculations. Appl. Catal. B: Environ. 2023, 338, 123042.
Guo, R. T.; Hao, J. K.; Pan, W. G.; Yu, Y. L. Liquid phase oxidation and absorption of NO from flue gas: A review. Sep. Sci. Technol. 2015, 50, 310–321.
Wang, J. L.; Wang, S. Z. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158.
Zhao, X.; Li, X.; Zhu, Z.; Hu, W. B.; Zhang, H. B.; Xu, J.; Hu, X.; Zhou, Y. T.; Xu, M.; Zhang, H. C. et al. Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen. Appl. Catal. B: Environ. 2022, 300, 120759.
Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.
Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Ma, L.; Zhang, J. M.; Xu, K. W.; Ji, V. A first-principles study on gas sensing properties of graphene and Pd-doped graphene. Appl. Surf. Sci. 2015, 343, 121–127.
Yang, W. J.; Huang, H. Y.; Liu, X. S.; Ren, J. N.; Ma, K.; Pan, Z. H.; Ding, Z.; Ding, X. L.; Gao, Z. Y. Screening the activity of single-atom catalysts for the catalytic oxidation of sulfur dioxide with a kinetic activity model. Chem. Commun. 2020, 56, 11657–11660.
Baerlocher, C.; McCusker, L. B. Practical aspects of powder diffraction data analysis. Stud. Surf. Sci. Catal. 1994, 85, 391–428.
Xie, X. W.; Xie, R.; J. Suo, Z. Y.; Huang, H. B.; Xing, M. Y.; Lei, D. X. A highly dispersed Co-Fe bimetallic catalyst to activate peroxymonosulfate for VOC degradation in a wet scrubber. Environ. Sci.: Nano 2021, 8, 2976–2987.
Feng, X. T.; Shang, Z. A.; Qin, R.; Han, Y. H. Advances in single-atom catalysts for electrocatalytic CO2 reduction. Acta Phys. -Chim. Sin. 2024, 40, 2305005.
Wang, M. Y.; Huang, R. B.; Xiong, J. F.; Tian, J. H.; Li, J. F.; Tian, Z. Q. Critical role and recent development of separator in zinc-air batteries. Acta Phys. -Chim. Sin. 2024, 40, 2307017.
Liang, H. J.; Zhang, B.; Gao, P.; Yu, X. H.; Liu, X. C.; Yang, X. C.; Wu, H. B.; Zhai, L. M.; Zhao, S. C.; Wang, G. F. et al. Strong Co–O–Si bonded ultra-stable single-atom Co/SBA-15 catalyst for selective hydrogenation of CO2 to CO. Chem Catal. 2022, 2, 610–621.
Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.
Zhang, R. R.; Sun, Z. T.; Zong, C. C.; Lin, Z. Y.; Huang, H.; Yang, K.; Chen, J.; Liu, S.; Huang, M. X.; Yang, Y. et al. Increase of Co 3D projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy 2019, 57, 753–760.
Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.
Ye, C. L.; Zheng, M.; Li, Z. M.; Fan, Q. K.; Ma, H. Q.; Fu, X. Z.; Wang, D. S.; Wang, J.; Li, Y. D. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202213366.
Kasper, J. M.; Iii, C. A. C.; Cooper, C. D. Control of nitrogen oxide emissions by hydrogen peroxide-enhanced gas-phase oxidation of nitric oxide. J. Air Waste Manag. Assoc. 1996, 46, 127–133.
Chen, L.; Yang, W. J.; Wang, Y. G.; Liang, Z. Y.; Zhao, Q. X.; Lu, Q. Investigation on the NO removal from simulated flue gas by using H2O2 vapor over Fe2(MoO4)3. Energy Fuels 2018, 32, 8605–8613.
Zhao, Y.; Yuan, B.; Shen, Y.; Hao, R. L.; Yang, S. Simultaneous removal of NO and SO2 from flue gas using vaporized H2O2 catalyzed by nanoscale zero-valent iron. Environ. Sci. Pollut. Res. 2018, 25, 25526–25537.
Chen, L.; Li, Y. X.; Zhao, Q. X.; Wang, Y. G.; Liang, Z. Y.; Lu, Q. Removal of NO x using hydrogen peroxide vapor over Fe/TiO2 catalysts and an absorption technique. Catalysts 2017, 7, 386.
Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.
Wang, Y.; Lin, Y.; He, S. Y.; Wu, S. H.; Yang, C. P. Singlet oxygen: Properties, generation, detection, and environmental applications. J. Hazard. Mater. 2024, 461, 132538.
Wang, L. L.; Lan, X.; Peng, W. Y.; Wang, Z. H. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. J. Hazard. Mater. 2021, 408, 124436.